Navigation

Documentation Home

 

Previous topic

Swirl

Next topic

Adaptive Thresholding

Version

Template MatchingΒΆ

In this example, we use template matching to identify the occurrence of an image patch (in this case, a sub-image centered on a single coin). Here, we return a single match (the exact same coin), so the maximum value in the match_template result corresponds to the coin location. The other coins look similar, and thus have local maxima; if you expect multiple matches, you should use a proper peak-finding function.

The match_template function uses fast, normalized cross-correlation [1] to find instances of the template in the image. Note that the peaks in the output of match_template correspond to the origin (i.e. top-left corner) of the template.

[1]J. P. Lewis, “Fast Normalized Cross-Correlation”, Industrial Light and Magic.
../_images/plot_template_1.png
import numpy as np
import matplotlib.pyplot as plt
from skimage import data
from skimage.feature import match_template

image = data.coins()
coin = image[170:220, 75:130]

result = match_template(image, coin)
ij = np.unravel_index(np.argmax(result), result.shape)
x, y = ij[::-1]

fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(8, 3))

ax1.imshow(coin)
ax1.set_axis_off()
ax1.set_title('template')

ax2.imshow(image)
ax2.set_axis_off()
ax2.set_title('image')
# highlight matched region
hcoin, wcoin = coin.shape
rect = plt.Rectangle((x, y), wcoin, hcoin, edgecolor='r', facecolor='none')
ax2.add_patch(rect)

ax3.imshow(result)
ax3.set_axis_off()
ax3.set_title('`match_template`\nresult')
# highlight matched region
ax3.autoscale(False)
ax3.plot(x, y, 'o', markeredgecolor='r', markerfacecolor='none', markersize=10)

plt.show()

Python source code: download (generated using mpltools 0.6dev)