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Abstract

Organic electronics hold the promise of low-cost, flexible, large-area electronic and optoelectronic
devices. In order to improve the performance of these devices, it is vital to control the morphology
(e.g., the crystallinity) of these thin films. This thesis examines how solvent-vapor annealing of
thin, amorphous films of Alq3—i.e., tris-(8-hydroxyquinoline) aluminum—promotes the growth of
single-crystal needles; we explore this system through experiments, modeling, and analytical scaling
laws.

The first part of this thesis describes the growth of single-crystal Alq3 needles from amorphous,
thin films of Alq3 annealed in methanol vapor. Micrographs captured during annealing reveal needle
lengths that grow like power laws, such that Lneedle ∼ tγ . We show that the growth exponent, γ,
decreases when the thickness of the Alq3 film is increased. In addition to needle growth, the fluid
films exhibited dewetting and coarsening behavior: the initially-uniform film broke up into small
drops that coalesced to form larger drops.

In the second part of this thesis, we develop a mathematical model describing these morpho-
logical changes—both drop formation and needle growth—during solvent-vapor annealing. The
evolution of the fluid film is modeled by a lubrication equation, and a convection-diffusion equation
captures the transport of Alq3 and methanol within the film. We define a dimensionless transport
coefficient, α, which describes the relative effects of diffusion and coarsening-driven convection. Nu-
merical simulations based on this 1D model reproduce the film evolution observed in experiments.

The final part of this thesis describes scaling laws that govern needle growth. For large α-values,
needle growth matched the theory of 1D, diffusion-driven solidification, such that γ → 1/2. For low
α-values, flow driven by drop collapses—i.e., coarsening—controls the growth of needles. Within
this regime, we identify two cases: needles that were small compared to the typical drop size, and
those that were large. For small needles, γ → 2/5, and for large needles, γ → 0.29. These scaling
laws provide a simple physical picture of needle growth and match numerical simulations.

Thesis Supervisor: Anette E. Hosoi
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

Alq3 needle wetting layer droplets

50 !m

0 1

solvent concentration

Figure 1-1: Top: schematic of needle growing into a fluid film with a varying solvent concentration. Bottom:
optical micrograph of area surrounding an Alq3 needle after annealing the Alq3 film for 3 hours. The rectangular
needle (entering from the left of the image) is surrounded by a clear wetting layer of fluid and small droplets.
Note: the schematic is drawn in the plane of the substrate, while the micrograph shows a top-down view of the
substrate.

1.1 Motivation

“The dream for many scientists is . . . to produce easy-to-process yet highly ordered molecular

systems” [62]. In an effort to realize this goal, I grow single-crystal organic needles (see

Fig. 1-1) and present a mathematical model describing their solidification from a thin, liquid

film.
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1.1.1 Organic electronics and crystalline order

Organic materials hold the potential for flexible, lightweight, large-area electronic [30] and

optoelectronic devices [34]. The intermolecular forces that bind organic semiconductors to-

gether are weak relative to the covalent bonds of traditional semiconductors, such as silicon

and germanium [71]. As a result, organic materials are ideal for electronic devices that re-

quire mechanical flexibility [33]. These weaker bonds also allow the use of low-temperature

or solvent processing techniques, which could significantly reduce manufacturing costs. Fur-

thermore, the properties of organic molecules can be custom-tailored for specific applications

(e.g., color tuning in electroluminescent materials [63]). But, whereas the method for produc-

ing single-crystal silicon for electronics is well understood [31], controlling the morphology

(e.g., the crystallinity) of organic materials remains a challenge [57].

To make organic devices commercially-viable, further research is required to understand

changes in film morphology during deposition, post-processing (e.g., annealing), and device

operation. Although the isotropic and homogenous nature of amorphous films benefits or-

ganic, light-emitting diodes (OLEDs), oriented, crystalline films of organic semiconductors

are better suited for “polarized light emission, OFETs [organic field-effect transistors], or or-

ganic solid-state injection lasers” [67]. In fact, previous solvent-vapor annealing experiments

have shown that increased crystalline order can improve electroluminescence [5] and the per-

formance of transistors [28] and photovoltaics [64] due to their enhanced charge mobility1

compared to their amorphous counterparts [49].

For further information on the use of organic semiconductors in electronic and opto-

electronic devices and the differences between amorphous and crystalline materials, see the

recent review by Shirota and Kageyama [86].

1.1.2 Nonlinear optics and waveguides

This thesis focuses on the growth of long, slender, single-crystal “needles” of the organic

semiconductor Alq3, tris-(8-hydroxyquinoline) aluminum, as shown in Fig. 1-2. Alq3 ex-

hibits highly-nonlinear optical properties due to its non-centrosymmetric crystal packing

1Charge-mobility relates the drift of electric charges in response to an applied voltage and is akin to a
diffusivity per volt.
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10 !m

Figure 1-2: Micrograph of Alq3 needle fluorescing in ultra-violet light. From Mascaro 2004 [58].

[51]. Furthermore, the needle-like geometry acts as an optical waveguide: the small cross-

sections concentrate the intensity of the incoming light, and the long lengths increase the

interaction distance to enhance nonlinear effects [88, 87].

These highly-non-linear optical effects allow Alq3 needles to alter the phase, frequency,

amplitude, or polarity of incoming light [56]. Such interactions facilitate the development

of novel optoelectronics, including frequency generators and convertors, all-optical switches,

and optical computing [70]. In particular, optical nonlinearities can be exploited to produce

optical switches for high-bandwidth telecommunications networks [66].

1.2 Previous Work

While the predominant process for producing single-crystal silicon has existed for almost a

century [31], the production of organic semiconductors is less mature. Active research in-

cludes ink-jet printing, stamping/templating, physical- and chemical-vapor deposition, solu-

tion deposition (drop-casting), and thermal and solvent-vapor annealing (see Liu et al. [55]

for a review). Here, we focus on crystallizing and organizing organic molecules through

solution-based synthesis [99]; specifically, we discuss evaporative processes and solvent-vapor

annealing.

1.2.1 Evaporative processes

In solution-deposition processes, such as spin-coating and drop-casting, organic molecules

and polymers are mixed with organic solvents and then deposited on substrates. As the sol-

vent evaporates, molecule-molecule, molecule-solvent, and molecule-substrate interactions
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compete and, under the right conditions, produce self-assembled structures [76]. For exam-

ple, Hameren et al. [98] deposited drops of disk-like porphyrin dyes dissolved in chloroform

onto glass substrates. As the chloroform evaporated, the receding contact line guided the

self-assembly of the disk-like molecules in columnar stacks both parallel (for small volumes)

and perpendicular (for large volumes) to the contact line. Similarly, experiments and simula-

tions by Rabani et al. [79] demonstrated pattern formation during the evaporation of solvent

from a nano-particle solution.

1.2.2 Solvent-vapor annealing

Many deposition processes produce amorphous and polycrystalline thin films, which can be

annealed to increase crystalline order. When organic thin films are exposed to an atmosphere

of solvent-vapor, interactions between the organic molecules and solvent imparts mobility

on the thin film, as we discuss in §2.1. Researchers have successfully used solvent-vapor

annealing to produce single-crystal needles (also known as fibers or wires) of P3OT2 [102,

103], PDI3 [22], HBC4 [23] and PE-PTCDI5 [19].

Needle formation during solvent-annealing is driven by interactions between organic

molecules, the solvent, and the substrate. Datar et al. [19] suggest that the solvent affinity

to the surface governs the amount of solvent on the substrate (as opposed to solvent affinity

to the molecule). And, they claim, more solvent leads to better molecular packing. De

Luca et al. [23] suggest that stronger molecule-molecule interactions lead to weakly-ordered

systems, while strong solvent-molecule interactions lead to high molecular-ordering; pre-

sumably because highly-ordered crystals have stronger crystalline interactions to overcome

strong solvent-molecule interactions.

1.2.3 Growth of oriented Alq3 needles

This thesis continues the work of Mascaro et al. [58, 59], who grew Alq3 needles up to a cen-

timeter long, with cross sections of less than a micron in size. The researchers first evaporated

2Poly(3-octylthiophene)
3perylene-bis(dicarboximide)
4hexa-peri -hexabenzocoronene
5propoxyethyl perylene tetracarboxylic diimide
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thin (10–20 nm), amorphous films of Alq3 onto silicon or glass substrates. These substrates

were then annealed in a solvent vapor (chloroform or methanol) at room temperature and

atmospheric pressure to produce single-crystal Alq3 needles (similar to the needle shown in

Fig. 1-1). These needles had heights and widths on the order of microns and lengths of up

to a centimeter.
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5.3.2 Methanol solvation 
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Figure 1-3: Experimental results from Mascaro [58]. Clockwise from top-left: 1) needle grown on patterned
substrate during chloroform annealing, 2) small crystals grow and dissolve during chloroform annealing on planar
substrates, 3) needle clusters growing on planar substrates during methanol annealing

Compared to flat substrates, the patterned substrates produced significantly-longer crys-

tal needles. These needles grew in alignment with the square-groove pattern and spanned

the length of the substrate (about 1 cm) with aspect ratios of more than 1000 to 1. On

flat substrates, methanol-annealing produced long (∼100µm), stable crystals. In contrast,

chloroform-annealing produced smaller crystals, which later aggregated to form clusters and,

at long times (approximately two hours), dissolved completely, as shown in Fig. 1-1.
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1.3 Overview of thesis

In this thesis, we investigate the physical mechanisms governing the growth of Alq3 needles

from an amorphous thin film during solvent-vapor annealing. To that end, I examine the

growth of needle-like crystals from a binary, fluid mixture through experiments, numerical

modeling, and analytical scaling-laws. In particular, I develop a model of the general growth

process as a function of substrate and solvent properties and compare this model to solvent-

vapor-annealing experiments of Alq3 on glass substrates. Modeling efforts, however, do

not explore the condensation/adsorption of solvent or the solvent-Alq3 interactions which

lead to “melting” of the initially-solid thin film; changes in film morphology during solvent

evaporation (as discussed in §1.2.1) are similarly ignored.

In Chapter 2 of this thesis, we review the physical processes in the solvent-vapor anneal-

ing experiment. Included in this overview is a review of the relevant literature. Chapter 3

describes the experimental setup and annealing procedure. These experiments produce real-

time images of growing Alq3 needles and measurements of needle lengths as a function of

time. In Chapter 4, we model the system with a lubrication equation to describe the evo-

lution of the thin liquid film and a convection-diffusion equation to describe the transport

of Alq3 and solvent within the thin film. Furthermore, we define a dimensionless transport

coefficient, α, which describes the relative strength of diffusion and coarsening-driven con-

vection. In Chapter 5, we derive analytical expressions for the dewetting and coarsening of

the fluid film and scaling laws for the growth of needles. These scaling laws provide a phys-

ical understanding of needle growth in the diffusion-dominated and coarsening-dominated

regimes. Chapter 6 presents and compares the results from experiments and simulations.

In both experiments and simulations, we find that needle lengths grow as power-laws in

time. In experiments, the growth exponent, γ, decreases with an increase in film thickness;

in simulations, this thickness dependence maps to a variation in the transport coefficient,

α. Finally, in Chapter 7, we review the primary results of this thesis and discuss future

directions for this research.
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Chapter 2

Physical Background

In this thesis, I grow single-crystal needles of Alq3 using solvent-vapor annealing, as described

in Chapter 3. The deposition of organic molecules has been studied elsewhere [33] and is

not the focus of this thesis. Instead, we focus on what happens to the amorphous Alq3 film

upon exposure to solvent-vapor; the basic steps are as follows:

1. Solvent-vapor adsorbs onto the Alq3 film and plasticizes it.

2. Fluid motion and diffusion transport solvent and Alq3 through the film.

3. Alq3-crystal needles nucleate and grow.

This thesis focuses on the motion of the fluid film, the transport of solvent/Alq3, and the

growth (but not nucleation) of needles. Nevertheless, this chapter reviews the physics of all

the above steps. In addition to reviewing the physics of the system, this chapter provides a

literature review for these various physical processes.

2.1 Solvent-vapor annealing

The as-deposited thin film of Alq3 is an amorphous-solid, or glass [11]. During solvent-

vapor annealing, solvent molecules adsorb onto and absorb into the glassy Alq3-film. The

addition of a low-molecular-weight additive (i.e., the solvent) plasticizes the film by reducing

its glass-transition temperature below room temperature.
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2.1.1 Vapor equilibrium and diffusion

In a closed system, a condensed phase (i.e., a liquid or solid) will vaporize until there is an

equilibrium concentration of its vapor in the surrounding gas.1 A vapor’s concentration can

be expressed in terms of its partial pressure

Pi = xiP,

where Pi and xi are the partial pressure and mole fraction of component i, and P is the

total pressure of the gas. At equilibrium, the partial pressure of the vapor is equal to its

saturated-vapor pressure (or equilibrium vapor pressure), P ◦i .

In order to reach equilibrium, solvent-vapor near its liquid reservoir must be transported

through the gas. For a small, closed system (like the annealing chamber in the present

study), convection is limited, such that diffusion dominates the transport of solvent-vapor.

Fick’s second law describes diffusion of a component, A, with concentration cA, as

∂cA
∂t

= D
∂2cA

∂x2 , (2.1)

where D is the diffusivity (or diffusion coefficient) of A in air. Applying dimensional analysis

to the diffusion equation, we find that diffusion carries particles a characteristic distance L

over a time-scale

T = L2/D. (2.2)

2.1.2 Adsorption and condensation of solvent-vapor

In experiments, solvent-vapor is transported to and interacts with the Alq3 film. This trans-

port can occur by way of adsorption or condensation. Although these phenomena are closely

1The term “gas” is preferred when a substance is in the gas phase at standard temperature and pressure;
“vapor” is preferred when it is liquid or solid at standard temperature and pressure [29].
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related, we will keep them distinct:2 Adsorption3 is driven by the attraction of an adsorbate

(i.e., the adsorbing molecule) to a surface or interface; in contrast, condensation initiates

when the vapor pressure is increased above the condensate’s saturation pressure.

Adsorption

solid A solid A solid A

medium B medium B medium B

a) wetting film of C b) partial wetting of C c) repulsion of C

Figure 2-1: Wetting scenarios for molecules of C in a fluid B near a solid surface A. Adapted from Israelachvili [45,
Fig. 9.5]

For a particle C in fluid media B in close proximity to solid A, the relative values of their

interactions energies—uA, uB, and uC for molecules A, B, and C—determine the behavior

of the system [45]:

a) Adsorption: If uC is the intermediate energy (i.e., uA ≷ uC ≷ uB) particle C is attracted

to the interface between A and B.

b) Partial wetting : If uA is the intermediate energy (i.e., uB ≷ uA ≷ uC) particles of C

partially wet solid A.

c) Desorption: If uB is the intermediate energy (i.e., uA ≷ uB ≷ uC) particle C is repelled

from the interface.4

2Adsorption and condensation are easily confused because their root words, adsorb and condense, are
each used in descriptions of both adsorption and condensation. When a particle lands on an interface, it is
adsorbed; for example, molecules can adsorb onto a solid surface to initiate condensation, or they can adsorb
onto their own condensed phase. When a sufficient number of molecules adsorb onto a surface, it becomes
a condensed phase.

3Adsorption and absorption are distinct processes: Adsorption is the attachment of atoms or molecules
to an interface; absorption is the incorporation of those particles into the bulk phase (i.e., away from the
interface).

4Israelachvili [45, p. 145] gives a great example of how two attractive potentials (A-to-B and A-to-C)
lead to repulsion: Wood is attracted to Earth by gravity. However, when water is introduced, wood is now
repulsed, because water is denser than wood; i.e., water is more attracted to Earth than the wood is.
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These situations are described graphically in Fig. 2-1.

This energetic argument qualitatively describes the tendency for molecules to adsorb

onto an interface. In practice, adsorption is described by adsorption isotherms, which relate

the amount of adsorbed vapor (adsorbate) to the vapor pressure and the attraction of the

adsorbate to the surface (see for example, the Langmuir and BET isotherms [75]). These

descriptions of adsorption are applicable when the vapor pressure is below the saturated

vapor pressure;5 above this point, condensation will dominate [26].

Condensation

Below a vapor’s saturation temperature or above its saturated-vapor pressure, the vapor

is supersaturated and favors the liquid state. The creation of a condensed phase, however,

introduces an interface with an associated surface tension, which can either inhibit or promote

condensation.

θe
θe

a) drop formation b) capillary condensation

Figure 2-2: Supercritical and subcritical condensation regimes.

Partially-wetting fluids, will form drops on a flat surface, as shown in Fig. 2-2(a). Surface

tension increases pressure in the drop relative to the surrounding vapor (see §2.2.3). This

increased pressure inhibits condensation and leads to a critical supersaturation, above which

condensation will occur [85, 27].

Conversely, partially-wetting fluids will fill capillaries and cavities in rough films and

porous surfaces; the filling of an idealized, rough surface is shown in Fig. 2-2(b). This

geometric effect can lead to low pressure in the fluid, such that condensation will initiate

below the saturation pressure [26, 9]; this phenomenon is known as capillary condensation

and is often discussed in conjunction with adsorption because of its dependence on surface

5In fact, many adsorption isotherms grow without bound as the pressure approaches the saturated vapor
pressure.
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properties (i.e., its roughness).

This thesis does not attempt to model solvent condensation, but the interested reader can

find other work on thin-film hydrodynamics with condensation (e.g., [93]) and evaporation

(e.g., [44, 89, 100]).

2.1.3 Glass-transition and plasticization
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Figure 2-3: Schematic of phase diagram for glass transition. The structure of a crystalline solid is fundamentally
different from that of a liquid, which leads to a jump in the volume, enthalpy, and entropy. An amorphous solid—
i.e., a glass—is structurally the same as a liquid and transitions smoothly from the liquid state. In reality, there
are a range of possible glass-transition temperatures, which depend on the rate of cooling; this has been ignored
to avoid complexity. Adapted from [11, 24].

In solvent-vapor experiments, the amorphous film of Alq3 undergoes a glass transition

upon exposure to solvent-vapor. The glass-transition is distinct from melting as it applies

specifically to amorphous materials (whereas melting applies to crystalline materials) [2, 24].

A material can be simultaneously above its glass transition temperature and below its melting

temperature, as shown in Fig. 2-3; in this state, a supercooled liquid can coexist with a

crystalline solid. Since this supercooled phase is metastable, it will readily solidify if the

crystal phase has nucleated.

An amorphous solid can be “melted” by raising its temperature above the glass-transition

temperature, as discussed above; alternatively, introducing solvents, or other additives, can

reduce the glass-transition temperature. In polymers, this reduction of the glass-transition

temperature is known as plasticization [81]. The term plasticize has been extended to col-
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Alq3 solvent

Figure 2-4: Schematic of absorption. Left: solvent molecules in the vapor work into the crevices of the Alq3

film. Right: solvent molecules shield the cohesive forces between Alq3 molecules, and dissolve the Alq3 film.

loidal systems, where a mixture of particles of different sizes leads to an entropically-induced

plasticization effect [40]. Qualitatively, the smaller molecules provide lubrication to the

larger particles [32].

There exist many models for glass-transition [2, 46] and plasticization of polymers [6], col-

loids [32], and molecular glasses [105]. Previous analysis suggested that the glass-transition

temperature for Alq3 drops below room temperature when it has imbibed approximately 18%

methanol by volume [58]; the actual mixing behavior, however, is dependent on the details

of the interactions (i.e., solubility) between Alq3 and methanol. Such analysis is beyond the

scope of this thesis.

In what follows, we assume that the Alq3 film has absorbed sufficient methanol to become

liquid; thus, evolution of the Alq3-and-methanol film is governed by the dynamics of thin,

liquid films.

2.2 The physics of thin fluid films

From experimental observations, we know that solvent-vapor combines with Alq3 to form a

thin liquid film. This section reviews some basic physical concepts related to thin films. For

a thorough review, see Oron, Davis, and Bankoff [74]; Craster and Matar [17]; and Thiele

[47, Ch. 2].
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Figure 2-5: A thin liquid film bounded by a solid, no-slip surface on bottom and a free surface on top has a
parabolic flow profile, as shown.

2.2.1 Thin-film evolution equation

For thin liquid films, the lubrication approximation (also known as the long-wave approxi-

mation) simplifies the Navier-Stokes equation to the thin-film evolution equation, in which

viscous effects dominate over inertial effects. To describe the thin film, we define the local

thickness of the film h(x, y, z, t), where x and y are coordinates in the plane of the film, z is

normal to the plane, and t denotes time. Conservation of mass gives6

∂h

∂t
= −∇ ·Q, (2.3)

where Q(x, y, t) is the volumetric flux7 through the liquid film, and underbars denote vector

quantities.

The lubrication approximation requires the characteristic film-thickness, H, to be much

smaller than all relevant length scales, L, in the plane of the film—i.e., H � L—such that

the Navier-Stokes equation is reduced to

µ
∂2u

∂z2
= ∇p,

where µ is the viscosity of the liquid, p(x, y, t) is the local pressure and u(x, y, z, t) is the

local velocity.

The volumetric flux is found by integrating the parabolic velocity profile8 (see Fig. 2-5)

6The del operator, ∇, in the thin-film equations is a 2D operator in the plane of the film (i.e., it operates
in the x- and y-directions) because we have integrated over the z-direction. Often, this operator is denoted
by ∇s (where “s” denotes surface).

7Q is actually the volumetric flux per unit depth.
8The parabolic velocity profile is a consequence of viscous flows and the application of free surface and

no-slip boundary conditions on the top and bottom of the film.
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across the film thickness, which gives

Q = −h
3

3µ
∇p. (2.4)

The negative sign reflects the fact that flow goes down pressure gradients, and the mobility,

h3/3µ, suggests that flow is inhibited by thinner films and more viscous fluids. Gradients

in pressure can arise from changes in film curvature (see §2.2.3 on surface tension), film

thickness (see §2.2.4 on intermolecular pressure), or thermal/concentration gradients (see

§C.3.1 on Marangoni effects).

2.2.2 Convection-diffusion equation for thin films

For a binary mixture of components A and B, the concentration of component A is described

by a convection-diffusion9 equation:

∂φA
∂t

+∇ · (uφA) = D∇2φA, (2.5)

where φA is the concentration of component A, u is the velocity field, and D is the interdiffu-

sivity of A and B. In this thesis, concentration has units of volume fraction,10 and we assume,

for simplicity, that volume is not a function of concentration. Under these conditions, the

concentration of component B is simply φB = (1− φA).

For thin films, we can simplify the convection-diffusion equation given by Eq. (2.5). If

diffusion across the film thickness is much faster than flow in the plane of the film, then

we can ignore variations of concentration across the film thickness. To estimate the relative

speed of diffusion and flow, we nondimensionalize Eq. (2.5) to find that convection in the

9This equation is more-accurately called an advection-diffusion equation. Both convection and advection
refer to transport by fluid motion. Convection, however, applies specifically to the transport of heat. In con-
trast, advection applies to the transport of any substance or conserved property. This thesis uses convection
instead of advection simply because advection is less commonly used, even when more appropriate.

10The units of concentration are ambiguous. Most frequently, it has units of number density (number of
atoms, molecules, or moles per unit volume), but it is also represented by number/mole fraction, volume
fraction, mass density, and mass fraction [3]. To emphasize that concentration has units of volume fraction,
we denote it by φ, as is common in problems in the literature (e.g., [106]).
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x-direction and diffusion in the z-direction are related by a modified Péclet number:

Pe′ = Pe

(
H

L

)
=
UH

D

(
H

L

)
,

where U is the characteristic velocity in the plane of the film, H is the characteristic film

thickness, and L is the characteristic length in plane of the film. For small values of Pe′ (i.e.,

Pe′ � 1), diffusion across the film dominates such that φA is approximately invariant in the

z-direction [60].

In the low Péclet-number limit, we follow the example of thin-film hydrodynamics (see

§2.2.1) and integrate the convection-diffusion equation, Eq. (2.5), over the film thickness.

Integration gives an evolution equation in terms of the mass of component A,11 φAh, instead

of the concentration, φA:
∂(φAh)

∂t
= −∇ · JA, (2.6)

where the flux of A, JA, is given by

JA = φAQ−Dh∇φA. (2.7)

The right-hand-side denotes the flux of component A driven by fluid flow and diffusion.

The negative sign on the diffusive term reflects the fact that components diffuses down

concentration gradients.

Similar thin-film convection-diffusion equations are found in surfactant-laden thin-film

flows (e.g., [60]) and phase-separation in binary-mixtures with diffuse-interfaces (e.g., [14,

15, 94, 69]). The convective-part of the equation is also common in particle-laden thin-film

flows (e.g., [106, 16]).12
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R

Figure 2-6: Surface tension produces a jump in pressure across a curved liquid-vapor interface. In general,
a surface can have two independent curvatures, 1/R1 and 1/R2 (curvature out of the page not shown in
schematic).

2.2.3 Surface tension

For a curved interface, surface tension produces a pressure jump across the interface, as given

by the Young-Laplace equation [21]:13

pin − pout = σ

(
1

R1

+
1

R2

)
, (2.8)

where pin and pout are the pressures inside and outside the thin film, and 1/R1 and 1/R2 are

the two principal curvatures of the interface. The above equation assumes positive curvature

when the center of curvature is in the inner domain, as shown in Fig. 2-6.

For a nearly flat interface, we can approximate the total curvature as 1/R1 + 1/R2 ≈
−∂2h/∂x2 − ∂2h/∂y2.14 To find the capillary pressure in the liquid film, let pout = 0 (atmo-

spheric) and pin = p, such that

p = −σ
(
∂2h

∂x2
+
∂2h

∂y2

)
. (2.9)

11Actually, φAh is the volume per unit area of component A.
12Note that the diffusive terms in Zhou, Bertozzi, and Hosoi [106] are from “gravity-driven” diffusion (in

contrast to diffusion driven by concentration-gradients).
13Not to be confused with Young’s equation for contact angles of a liquid drop or with Laplace’s equation

describing all sorts of equilibrium phenomena.
14The negative signs reflect the fact that the positive curvature depicted in Fig. 2-6 is concave down, which

corresponds to a negative second derivative.
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2.2.4 Intermolecular interactions

For a pair of molecules separated by a distance r, the Lennard-Jones potential describes the

strength of their interaction as

V = −
(
A

r6
− B

r12

)
, (2.10)

where A and B are constants proportional to the long-range attraction (van der Waals

attraction) and short-range repulsion (steric effects) between the molecules. This interaction

a) molecule-molecule b) molecule-surface c) surface-surface

r hr

Figure 2-7: Intermolecular interactions between molecules and surfaces.

between individual molecules can be extended to surfaces (semi-infinite media). To calculate

the interaction between a molecule and a surface (Fig. 2-7b), we integrate the potential over

the volume of the medium, such that long-range attraction scales like r−3, and short-range

repulsion scales like r−9. To find the interaction energy per unit-area between two surfaces

separated by a height h (Fig. 2-7c), we integrate one more time (over the thickness of the

second surface) to find

U ∼ −
(

1

h2
− 1

h8

)
. (2.11)

Whereas V represents an intermolecular energy between two molecules, U represents an

intermolecular energy per unit area between two surfaces. The change in exponents (from

6-12 to 2-8) means that intermolecular interactions between surfaces are significant for larger

distances than for individual molecules [45]. For the experiments in this thesis, we have two

semi-infinite domains (solid substrate and surrounding vapor) separated by a thin liquid film;

in this case, intermolecular interactions—specifically van der Waals forces—are significant if

the liquid films is between 10 and 100 nm thick [74].
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Intermolecular pressure

Intermolecular interactions come into the thin-film equations as a pressure. The intermolec-

ular pressure, Π, is related to the energy potential by Π = ∂U/∂h; thus, the intermolecular

pressure corresponding to the Lennard-Jones potential scales as h−3 and h−9.

Note that the Lennard-Jones potential, Eq. (2.10), describes long-range van der Waals

attraction and short-range Pauli repulsion.15 The general form for an intermolecular pressure

combining long-range attraction and short-range repulsion is given by

Π(h) =
an
hn
− am
hm

. (2.12)

The power of the exponents in Π can be associated with various physical effects, as sum-

marized in Tbl. 2.1. In this thesis, we assume that the coefficients an and am are invariant,

such that the substrate and liquid properties are uniform.16 The intermolecular potential17

corresponding to Eq. (2.12) is expressed as

U = − an
(n− 1)hn−1

+
am

(m− 1)hm−1
.

This intermolecular potential, and its corresponding pressure, are plotted in Fig. 2-8.

When the pressure given by Eq. (2.12) has only a single term (either attractive or repul-

sive), it is called the disjoining pressure, as introduced by Derjaguin in 1939 [25]. When the

pressure combines attractive and repulsive terms, it can be dubbed the disjoining pressure

[38], generalized disjoining pressure [74], disjoining-conjoining18 pressure [73, 39], thermo-

molecular pressure [101], or intermolecular pressure [84]. This thesis uses the term inter-

molecular pressure.

Although some investigations examine the film evolution due to a single attractive or

repulsive term in the intermolecular pressure, the present study requires both attractive

15Note that the r−12 exponent is semi-empirical and was originally chosen because it is computationally-
convenient (since it is the square of r−6).

16Variations in substrate properties can cause interesting dewetting phenomenon, as discussed in [82, 48,
47].

17Some papers refer to the intermolecular pressure as “intermolecular potential” (e.g., [48]); here inter-
molecular potential refers to an energy potential.

18Where “disjoining” refers to the repulsive term and “conjoining”refers to the attractive term.
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Figure 2-8: Intermolecular potential and pressure

term description

h−1 hydrogen-bonding-dependent structural contribution [90]
h−2 ion-electrostatic, overlapping double-layer contribution [90]
h−3 van der Waals (dispersion) force [38, 39, 90],
h−4 short-range repulsion [38] and retarded van der Waals force [20, 82]
h−9 short-range repulsion conjugate to r−12 term of Lennard-Jones potential [38].
exp(h/l) polar (double-layer) interactions [20, 13].

Table 2.1: Physical interpretation of terms in intermolecular pressure

and repulsive terms.19 Without attractive interactions, there is no instability in the film.

Without a repulsive term, the system cannot be modeled using hydrodynamics, since a

purely attractive term would become singular as the film dewets20 [82]. In contrast, when

both attractive and repulsive terms are present, “dewetting” produces drops separated by

an ultra-thin liquid film.

19When the intermolecular potential is purely attractive, one can study the evolution of the thin film up
to the point of dewetting (but not its evolution after dewetting); e.g., Kao, Golovin, and Davis [48]. When
the potential is purely repulsive, gravity will limit the growth of this repulsive potential; e.g., de-Gennes [20]
and Bonn et al. [9].

20A purely attractive intermolecular potential would reduce the film thickness to zero, but since the
potential scales as h−n, it blows up as h→ 0.
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Equilibrium film thickness, ε

At a film thickness h = ε, long-range attraction balances short-range repulsion leading

to a minimum in energy, such that ∂U/∂h = 0.. At this equilibrium film thickness, the

intermolecular pressure is zero, as shown in Fig. 2-8.

We can rewrite Eq. (2.12) in terms of ε as follows:

Π(h) = κ
[( ε
h

)n
−
( ε
h

)m]
, (2.13)

where h is the height of the film. Using the fact that the intermolecular pressure is zero at

h = ε, we find that (see Gomba and Homsy [39] for a detailed explanation)

ε =

(
am
an

)1/(m−n)

.

Combining this expression for ε with Eq. (2.12) and Eq. (2.13) allows us to write κ in

Eq. (2.12) as

κ =

(
am

n

anm

)1/(n−m)

=
an
εn
. (2.14)

Hamaker constant

Van der Waals interactions are represented by an intermolecular pressure that scales as h−3

and has a coefficient

a3 = A132/6π, (2.15)

where A132 is the Hamaker constant for phases 1 and 2 separated by a thin layer of phase 3

[45]. The Hamaker constant captures the polarizabilities and geometry of the three phases.

If phase 2 is vapor, then its Hamaker constant is A22 = 0, such that the combining relations

(see Israelachvili [45]) simplify to

A132 =
√
A33(

√
A33 −

√
A11).

Thus, A132 is positive—and van der Waals interactions are attractive—if A11 < A33. In this

thesis, we denote the Hamaker constant as ASLV for a solid substrate and a vapor separated
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by a thin liquid film.

The magnitude of ASLV is typically 10−20 to 10−19 J, but this value can be either positive

or negative. Unfortunately, the literature is not consistent on whether a positive or negative

Hamaker constant reflects an attractive or repulsive intermolecular potential, as described

in the following section.

A note on the sign of the intermolecular pressure

The literature is not at all consistent in derivations of intermolecular interactions. The

literature disagrees on

• whether a positive Hamaker constant, ASLV, denotes attraction or repulsion

• the sign relating the energy potential and the Hamaker constant, U ∼ ±ASLV

• the sign relating the pressure and energy, Π ∼ ±U

• the sign relating the intermolecular pressure and liquid pressure, pliquid ∼ ±Π

These sign differences can be separated into two cases:21

1. attractive ASLV, U ∼ −ASLV, Π ∼ ∂U
∂h

, pliquid ∼ Π

2. repulsive ASLV, U ∼ ASLV, Π ∼ −∂U
∂h

, pliquid ∼ −Π

The first case encompasses books and papers by Israelachvili [45, Ch.11]; Glasner and Wi-

telski [38]; Oron and Bankoff [73]; Kao et al. [48]; and Wettlaufer and Worster [101]. The

second case of sign conventions is used in de Gennes et al. [21, Ch.4]; de Gennes [20]; and

Bonn et al. [9].

There are two main sources for the sign differences in the literature. First, the disjoining

pressure was introduced by Derjaguin [25] to describe the thickening of adsorbed films due

to intermolecular interactions. In this case, a positive disjoining pressure—as the name

suggests—arises from repulsive intermolecular interactions. These interactions, however,

21Gomba and Homsy [39] is an outlier: Π ∼ −∂U
∂h and pliquid ∼ −Π like case 2, but the Hamaker constant

is attractive.
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necessitate a negative liquid pressure (see Fig. 2-8); thus, “disjoining pressure” and pressure

would have opposite sign.

A second source of confusion arises because it is unclear what body the intermolecular

pressure acts on (i.e., action-reaction pairs). For example, Wettlaufer and Worster [101] refer

to the intermolecular pressure22 as the pressure exerted by intermolecular interactions on the

liquid. By Newton’s third law, the pressure in the liquid must be equal and opposite; thus,

intermolecular pressure can refer to the pressure exerted by the liquid on the surrounding

environment.

In this thesis, intermolecular pressure refers to the pressure in the liquid due to inter-

molecular interactions, and a positive ASLV denotes an attraction between surfaces.

2.2.5 Dewetting fluid films

(a) A thin liquid film with an initially uniform, but rough, rough thickness (left) dewets to form drops separated
by an ultra-thin film.

(b) Time-lapse plot (strobe plot) of the thickness profile as the liquid film breaks up in to drops. Lighter and
darker colors suggest earlier and later times, respectively.

Figure 2-9: Dewetting instability of thin liquid films

The competition between intermolecular forces and surface tension drives the initially-

uniform film toward the formation of drops, as shown schematically in Fig. 2-9. Micrographs

from experiments also show drop-like regions far from needles (e.g., the right side of Fig. 1-

1). This dewetting process has been investigated both theoretically [83, 72, 4, 38] and

experimentally, for both polymer films [80, 104, 52, 4, 8], and metallic films [7]). Two

qualitatively different regimes of dewetting are discussed below: spinodal dewetting and

22Actually, what I call the intermolecular pressure they call the thermomolecular pressure.
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nucleation-driven dewetting.

Spinodal dewetting

For an initially-uniform (but rough) thin film, the attractive term in the intermolecular pres-

sure, Eq. (2.13), drives slightly-thinner regions toward the substrate. When the equilibrium

thin-film thickness, ε, is below a critical value, the initially-uniform liquid film is unstable and

will break up into droplets separated by an ultra-thin film [38, 74]; this thinning instability is

known as dewetting.23 From linear-stability analysis, the wavelength for the instability—i.e.,

the spacing between drops—is given by λ ∼ h0
2 and grows over a characteristic time τ ∼ h0

5

[82] (these relations will be derived in detail in §5.1.1).

Because of the similarities between the thin-film equation and the Cahn-Hilliard equation,

many researchers have taken to calling this dewetting instability “spinodal-dewetting”, as an

analogy to “spinodal-decomposition”.24 Similarities and differences between these equations

and dewetting/decomposition are discussed in [65, 73, 38, 93].

Nucleation-driven dewetting

Since spinodal dewetting grows with a characteristic time that scales as h0
5, the dewetting

instability is slow to develop for thick films. As a result, finite perturbations in the initial

film thickness can trigger the nucleation of holes [95, 92, 4, 82]. The growth of these holes

can further trigger a cascade of drops and holes, as shown in Fig. 2-10.

This nucleation of holes is analogous to the nucleation of phases in phase separation, just

as spinodal dewetting is analogous to spinodal decomposition. A brief discussion of these

similarities is provided in §A.1.

23Although this process is called “dewetting”, there is still a fluid layer connecting adjacent droplets. In
fact, I even call this ultra-thin film a “wetting layer”.

24The term “spinodal” refers to the curve where the curvature of the free energy goes to zero and separates
meta-stable regions (where nucleation drives phase-separation) and unstable regions (where infinitesimal
perturbations drive phase-separation). The etymological origin of the term comes from “spinode”, i.e., a
cusp. If the free energy is plotted as functions of volume and entropy, it forms a cusp at the spinodal [10].
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the film surface is seen to develop a correlated pattern of indentations,
whereas in Fig. 2, uncorrelated holes appear that rapidly grow in size.
Owing to mass conservation, the material removed from the inner side
of a hole is accumulated at the boundary of the hole, with a film
depression developing behind this rim24.Figure 2 shows a novel pattern-
formation process during dewetting: from a certain size of the first hole
onwards, a second row of holes (‘satellite holes’) appears in this film
depression, followed by a third one and so on, in a kind of hole-forming
cascade. It is worth mentioning that preliminary non-dimensionalized
numerical results on cascadic dewetting have been presented22.
However, it must be emphasized that the snapshots to be found in that
work (see, for example, Figure 5 in ref. 22) show holes of rectangular
shape. This is at variance with our experimental findings, and it would
be astonishing if this peculiarity were not a consequence of their
numerical method being based on central differencing and hence
rectangular grids.

We note that, for both scenarios of film rupture, our results in
simulation and experiment are in close qualitative and quantitative
agreement. This can, for example, already be seen by looking at the
timescales involved. Taking the formation of the first hole as the origin
of the time axis in simulation and experiment,the absolute timescale for
the appearance of, for example, connected holes in Fig. 1 or the satellite
holes in Fig.2,are of the same order of magnitude.

Although the accordance of the timescales of experiment and
simulation are a first indication of the quantitative nature of our results,
the precise nature of the simulation results can be demonstrated by
pattern analysis based on integral geometry, which provides accurate
comparison tools beyond the visual inspection of the patterns25–27.This
is of particular relevance,because the morphology of the rupturing film
has two contributions of different character: although in the AFM
image, the holes are easy to identify by eye, a description of the film in

between the holes requires a closer inspection. For this we have
developed a novel tomographic scheme which is applicable to both the
experimental and the simulation data. To characterize the surface
structures we introduce contour lines given by isosurfaces h(x→→, t) = l
where l is a fixed threshold value and t is time, and use the Minkowski
functionals s(l), u(l), and κ(l) to characterize the resulting set of black
and white images (see Methods: Pattern analysis). These functions are
sensitive to the geometry of the film surface and measure spatial features
that are not visible to the eye. An unexpected finding of this
mathematical analysis is that both experiments and simulations shown
in Fig. 1 follow a gaussian random-field model for contours above the
average film thickness at l0 ≈ 3.9 nm, namely s(l) = s0,
u(l) = u0 – u2(l – l0)

2,and κ(l) = κ1(l– l0).In Fig.3 only the time-averaged
normalized data are shown for clarity, but a similar good agreement
between model expectation and data are found for each snapshot at any
given time. Only the parameters s0 = t–νs, u2 = t–νu and κ1 = t–νκ depend
algebraically on t with exponents 2νs ≈ 2νκ ≈ νu ≈ 1.8 ± 0.2 over at least
two decades. An excellent consistency check is provided by the ratio
Y = s0κ1/u2 = 2/π2 ≈ 0.203 (compare with Fig. 3d), which remains
constant for gaussian random fields.Moreover,the expected zeros u′(l0)
= 0 and κ(l0) = 0 are matched by experiments and simulations for all
times.Such a gaussian random-field behaviour is not found for the data
(experiments and simulations) shown in Fig. 2, because the process of
satellite hole formation involves not only uncorrelated Fourier modes,
but also follows a correlated deterministic structural evolution. Details
will be given elsewhere (K.R.Mecke,et al.,unpublished results).

In conclusion, our results demonstrate the capability of the thin-
film model of equation (2) to quantitatively describe the dynamical
evolution of thin-film rupture. In particular, the temporal evolution of
the film morphology is mimicked perfectly by our simulations without
any fitting parameter over a time-interval far exceeding the initial

Figure 2 Satellite holes. a,Experimental dewetting scenario of a 4.9 nm PS film on an oxidized Si wafer; temporal series of AFM scans recorded in situ at T = 70 °C.b,Simulated scenario
for a system with identical properties as in the experiment.Highest points reach 12 nm above hole ground.As initial data we took a slightly corrugated film with a depression in its centre.

a

b
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Figure 2-10: Hole formation from Becker et al. [4]. The top sequence shows AFM images of a 4.9 nm thick
polystyrene film dewetting from a silicon substrate. The bottom sequence shows a numerical simulation with
properties matching the experiments.

2.2.6 Drop coarsening

After a uniform film breaks up into drops, surface tension drives small, finely-spaced drops

toward the formation of larger, coarsely-spaced drops, as described theoretically in [38] and

measured experimentally in [54, 8]. This coarsening process can occur through either co-

alescence or collapse of drops [37]—also dubbed drop migration and Ostwald ripening, re-

spectively [36]. In dynamic coalescence, drops migrate toward each other until they collide

and merge; while in Ostwald ripening, pressure differences between adjacent drops drive flow

through the ultra-thin film connecting adjacent drops.25 These two methods of coarsening

are illustrated in Fig. 2-11.

In §5.1.2, we reproduce scaling laws for coarsening that were originally derived by Glasner

and Witelski [38].

25Flow through the ultra-thin film is also (confusingly) dubbed diffusion-driven mass transfer [37].
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(a) Drop collapse: pressure differences between
small (high pressure) and large (low pressure)
drops drives flow through the ultra-thin film con-
necting adjacent drops. This flow drains small
drops and feeds large drops.

(b) Drop collision: drops migrate toward one an-
other, until they merge to form fewer, larger drops.
Since flow scales as h3, larger drops are more mo-
bile than small drops.

Figure 2-11: Schematic of drop collapse and collision. Reproduced from [37, Fig. 13]

2.3 Nucleation and solidification

After plasticization, Alq3 can crystallize into a more energetically-favorable state (see Fig. 2-

3). Hence, when an Alq3 molecule is transported to the vicinity of a nucleated needle, it

will bind to the crystal and expel its no-longer-needed solvent molecules. In analogy to

thermally-driven solidification, solvent concentration plays the role of thermal energy and

solvent that is expelled during crystallization plays the role of latent heat [53].

2.3.1 Nucleation of solids

When a liquid is supercooled, it is (by definition) energetically-favorable for the liquid to

solidify. This driving force is quantified by ∆f : the bulk free-energy26 change per unit volume

going from liquid to solid. Since the system tends toward lower energy, ∆f must be negative

for solidification to be favorable.

But supercooling alone is not sufficient for solidification because a small seed of solid will

entail an energetic penalty for its liquid-solid interface; this penalty is proportional to the

interfacial energy,27 σ. Thus, for a solid nucleating from its liquid phase, the total free-energy

change for nucleation is given by [3, §19.1]

∆F = V∆f + Sσ, (2.16)

26The qualification “bulk”, in “bulk free-energy”, implies that we ignore the energy costs of creating an
interface.

27Interfacial energy, surface energy, and surface tension are equivalent concepts and have units of energy
per unit area. In practice, surface tension usually specifies liquid/vapor interfaces, while surface energy
applies to either liquid/vapor or solid/vapor interfaces; interfacial energy is preferred for all other interfaces
(e.g., an interface between two phases in an alloy).
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where V is the volume of the solid phase and S is the surface area of the solid/liquid interface.

This energy expression suggests that small seeds will dissolve because of a high surface-to-

volume ratio, while large seeds are energetically-favorable and will grow.
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Figure 2-12: Total-free-energy change vs. the nucleus size

For a nucleated cluster with size N (e.g., the number of molecules in the cluster), the

total free-energy change is

∆F ≈ N∆f +N 2/3σ,

where the volume and surface-area of the cluster scale as N and N 2/3. This free-energy

change is plotted in Fig. 2-12.

The nucleated cluster will grow if adding a molecule to it lowers ∆F ; thus, the critical

nucleus size, N∗, maximizes the total free energy change, as shown in Fig. 2-12, and the

critical free-energy change is ∆F∗ ≡ ∆F(N∗). Thermal motion in the liquid allows the

formation of solid seeds despite positive (i.e., unfavorable) energy change. From empirical

studies, nucleation is observable if the critical nucleation energy is ∆F∗ . 76 kBT, where

kBT captures the thermal energy at temperature T and kB is Boltzmann’s constant.

A thorough review of nucleation phenomena is provided in Balluffi et al. [3, Ch. 19] and

Kelton [50].
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2.3.2 Interface equilibrium

For all but the fastest growing solids, local equilibrium applies at the interface, and solidifica-

tion is diffusion limited [3].28 At local equilibrium, the temperature at the interface is fixed at

the melting temperature Tm for thermally-driven solidification; while for phase-separation-

driven solidification, the concentration is fixed at φsolid and φtip on the solid and liquid sides

of the interface [53], as shown in Fig. 2-13. In this thesis, φsolid is small (Alq3-rich), and φtip

is comparatively large (solvent-rich).

φsolid

φtip
φ

Figure 2-13: Local thermodynamic equilibrium fixes the concentration on the solid and liquid sides of the
solid/liquid interface.

2.3.3 Interface growth velocity (the Stefan Condition)

For diffusion-limited solidification, growth of the interface is governed by the Stefan condi-

tion. In the following, we restrict discussion to solidification due to species diffusion.29

The Stefan condition is essentially an expression of conservation of mass and relates the

interface position to the fluxes in and out of the interface [3, §20.1.1]. Consider a one-

dimensional crystal with height hsolid and solvent concentration φsolid growing at velocity

vn normal to the interface. Over a time ∆t, the growing crystal absorbs material with a

concentration φsolid and rejects material with a concentration φtip, such that

∆mcrystal = vn(φsolid − φtip)hsolid∆t.

This mass must be supplied/rejected by flux into/out-of the interface. Assuming flux is only

28If the interface is not at equilibrium, growth is limited by the rates at which atoms can be absorbed or
emitted. This phenomenon is known as interface-limited growth (see e.g., [3, §20.2.2]).

29Alternatively, the Stefan condition can be derived for thermally-driven solidification.
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due to diffusion through the liquid, we find30

vn(φsolid − φtip)hsolid∆t = −
(
−D∂φ

∂n
hsolid∆t

)
,

where D is the diffusivity of solvent through the liquid and ∂φ/∂n is the concentration

gradient normal to the interface. Note: the above assumes that the height of the liquid, at

the solid/liquid interface, matches that of the solid (for a discussion of this assumption, see

§6.6.5). Rearranging the equation above gives the solidification velocity

vn =
D

(φsolid − φtip)

∂φ

∂n
. (2.17)

30The minus sign inside the parentheses on the right-hand-side, arises because diffusion goes down concen-
tration gradients; the second minus sign arises because growth requires flux toward the interface, opposite
the direction of growth.
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Chapter 3

Experiments

This chapter describes solvent-vapor annealing experiments, which promotes the growth of

Alq3 needles (as shown in Fig. 3-1) from amorphous thin-films of Alq3.

50 !m

Figure 3-1: Micrograph of region around Alq3 needle after annealing. Experiments show three regions of interest
(from left to right): 1) single-crystal needles of Alq3, 2) thin wetting films surrounding needles (featureless
regions), and 3) droplet regions.

3.1 Experimental procedure

The experimental procedure used to grow Alq3 needles is outlined in Fig. 3-2. Before depo-

sition, half-inch-square glass substrates were cleaned according to the procedure described

in §C.4. Next, thin, amorphous Alq3-films, 15–60 nm-thick, were evaporated onto the glass-

substrates at low pressure (< 10−6 Torr) with deposition rates of 1.5–2.5 Å/s. After deposi-

tion, the substrates—along with a container of methanol—were placed in a sealed chamber

at room temperature and pressure, for 1–3 hours. During this annealing period, a small area

of the substrate (1.4× 1 mm) was imaged using an optical microscope.
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Alq3 crystals
and droplets

glass substrate amorphous Alq3 film

methanol annealingAlq3 deposition

~400K

Figure 3-2: Growth of Alq3 needles: a thin, amorphous film of Alq3 is evaporated onto a half-inch-square
glass substrate. The substrate is then placed in a sealed chamber along with a container of methanol. The
solvent-vapor fills the chamber and interacts with the Alq3 film to produce droplets and needles.

parameter value

Alq3 deposition rate 1.5–2.5 Å/s
Alq3 film thickness 15–60 nm

Table 3.1: Experimental parameters

3.2 Annealing chamber

substrate

solventpartition

Figure 3-3: Annealing chamber with separate compartments for the substrate and solvent. A movable partition
separates the compartments. The lid of the chamber has four electrical connectors for sensors and other
electrical components.

The annealing chamber was built from a section of 3×1 inch extruded aluminum tubing

with 1/8-inch-thick walls. As shown in Fig. 3-3, the chamber is divided into two equally-sized

compartments: one for the substrate and one for the solvent. A glass cover slip was glued

onto the bottom of the chamber with a solvent-resistant epoxy, JB WeldTM.

A removable lid was fabricated from a 1/16-inch-thick aluminum plate and is attached
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to the chamber body by four 2-56×1/4 inch hex screws. The lid has a glass viewport on

the substrate side and four electrical connectors: two on the substrate side and two on the

solvent side. The glass viewport and glass bottom-plate allow imaging of substrates during

solvent-vapor annealing. Thermistors connected to the lid measured the temperature in each

compartment, and a UV LED1 illuminates the substrate.2

The solvent- and substrate-sides of the annealing chamber are separated by a movable

partition. The partition is hinged with a 5-40×1.5 inch bolt, which extends outside of the

chamber.3 A small lever-arm attached to the bolt facilitates opening and closing the parti-

tion. Four neodymium magnets attached to the partition4 ensure a tight seal between the

solvent- and substrate-sides of the annealing chamber when the partition is closed.

3.3 Solvent-annealing setup

Since methanol vapors are toxic [1], solvent is added to the annealing chamber in a fume

hood. After, adding a glass substrate (with the Alq3 thin film facing up), the lid is attached

to seal the chamber. Note that, the partition between the solvent- and substrate-sides of the

annealing chamber should be closed to reduced solvent-annealing during this set-up phase.

After sealing the chamber, it is moved from the fume hood to a NikonTM TE2000-U

microscope, as shown in Fig. 3-4. Images of the substrate are captured by a camera (AbrioTM

imaging system with 1392×1024 pixel resolution) affixed to the microscope. Substrates were

typically annealed for 1–3 hours, although some annealing experiments lasted almost two

days.
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Figure 3-4: Experimental setup: annealing chamber placed under a microscrope during annealing. A camera is
affixed to the microscope, and the output is displayed on a computer monitor (right).

5 !m

44 !m

20 "m
5 min 10 min 20 min 60 min 120 min

Figure 3-5: Top: cluster of needles growing during solvent-annealing. Top-left needle from the cluster is tracked
over time in bottom image. Bottom: slice of micrograph-pixels along the axis of a needle as a function of time.
The dark curved line is the tip of the needle as a function of time and shows the needle growing from 5µm
to 44µm over the course of the 3 hour anneal. To the left and right of the pixel-slice plot are images of the
needle 5 minutes and 180 minutes into the annealing process; the arrows are aligned with the pixel-slice for
those image-frames.
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3.4 Needle-length measurements

The length of a needle can be tracked in experiments by taking a 1D-slice of pixels along

the needle’s long-axis. When sequential pixel-slices are placed side-by-side, we can easily

visualize the evolution of the needle length. The dark, curved line in the bottom image of

Fig. 3-5 gives the position of the needle tip as a function of time. Since the pixel-slices start

at the base of the needle, the height of the tip corresponds to the length of the needle.

1ultra-violet light-emitting-diode
2Alq3 fluoresces in UV light (by emitting light in the green spectrum). This UV LED was not used during

normal experiments.
3Using a bolt as a hinge is a simple way to ensure a good seal (with the aid teflon tape) because of the

tight tolerance between bolts and drill taps.
4Two magnets are placed near the top of the movable partition, and two more are placed near the top of

the fixed partition.
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Chapter 4

Mathematical model of thin-film

crystal growth

This chapter describes the evolution equations for a thin film with dimensionless thickness,

h, and dimensionless solvent-concentration, φ, as shown in Fig. 4-1.

h(x, t)

solvent concentration, φ0 1

Figure 4-1: Schematic of thin film with thickness, h, and solvent-concentration, φ

To reduce the number of parameters in the problem, we nondimensionalize equations by

the fluid viscosity, µ; fluid density, ρ; interdiffusivity of solvent and Alq3, D; a characteristic

length in the x-direction, L; and the initial thin-film thickness, h̃0. In what follows, tildes

(e.g., h̃) denote dimensional counterparts to dimensionless variables, which are defined in

Tbl. 4.1.1

1Note that this convention applies to all following chapters, but not the preceding chapters. In particular,
equations presented in Chapter 2 are dimensional (but are not denoted by tildes).
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physical variable dimensionless expression

time t =
t̃

ρh̃0L/µ

spacial coordinate x =
x̃

L

film thickness h =
h̃

h0

equilibrium thickness ε =
ε̃

h0

fluid velocity u =
ũ

µ/ρh0

pressure p =
p̃

3µ2L/ρh̃3
0

solvent concentration φ =
φ̃− φ̃solid

φ̃tip − φ̃solid

Table 4.1: Dimensionless variables in the mathematical model. Note that tildes denote dimensional variables,
and variables to the right of a slash (/) are in the denominator (in contrast to the normal order of operations).

4.1 Thin-film evolution equation

For one-dimensional flow, conservation of mass for the fluid film—described by Eq. (2.3)—

can be simplified to
∂h

∂t
= −∂Q

∂x
. (4.1)

Similarly, the fluid flux—described by Eq. (2.4)—can be simplified to

Q = −h3 ∂p

∂x
. (4.2)

Note that the expression above is dimensionless, such that viscosity has been scaled out of

the equation.

Substituting Eq. (4.2) into Eq. (4.1) gives a dimensionless equation for the evolution of

the thin, fluid film:
∂h

∂t
=

∂

∂x

(
h3 ∂p

∂x

)
. (4.3)
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4.2 Solvent-mass evolution equation

φ̃solid

φ̃tip
φ̃

(a) dimensional concentration

0

1
φ

(b) dimensionless concentration

Figure 4-2: Local solvent concentration near the needle tip. The needle is Alq3-rich and thus, a low solvent
concentration φsolid. When the concentration is nondimensionalized, as shown in Tbl. 4.1, the concentration
goes to 1 on the liquid side of the needle tip and 0 in the solid.

The dimensionless solvent-concentration, φ, is defined in Tbl. 4.1 and shown schematically

in Fig. 4-2. For one-dimensional flow, conservation of mass for the solvent—described by

Eq. (2.6)—can be simplified to
∂(φh)

∂t
= −∂J

∂x
, (4.4)

and the solvent flux, given by Eq. (2.7), becomes

J = φQ−Dh∂φ
∂x
. (4.5)

Note that these dimensionless equations assume that volume is not concentration dependent,

as discussed in 2.2.2. The dimensionless diffusivity (i.e., diffusion coefficient), D, is

D =
ρDh̃0

µL
, (4.6)

where D, ρ, and µ are the diffusivity, density, and viscosity of the fluid.

Substituting Eq. (4.5) into Eq. (4.4) gives a dimensionless equation for the evolution of

solvent mass:
∂(φh)

∂t
=

∂

∂x

(
φh3 ∂p

∂x
+Dh∂φ

∂x

)
. (4.7)
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4.3 Pressure in the thin liquid film

Pressure in the film arises from two effects: surface tension and intermolecular pressure.2

The intermolecular pressure captures various intermolecular interactions, as summarized in

Tbl. 2.1. Based on the literature on dewetting films [38, 35, 74], we combine a long-range,

attractive, van der Waals interaction, with exponent n = 3, and a short-range, repulsive

interaction, with exponent m = 4.3

For the 3-4 potential, Eq. (2.14) gives κ = a3/ε̃
3 = ASLV/6πε̃

3, such that the intermolec-

ular pressure from Eq. (2.13) becomes

Π̃(h̃) =
ASLV

6πε̃3

[(
ε̃

h̃

)3

−
(
ε̃

h̃

)4
]
, (4.8)

where ε̃ is the equilibrium film thickness, at which long-range van der Waals attraction

balances short-range repulsion.

Using the dimensionless parameters defined in Tbl. 4.1, we find

Π(h) = A
[( ε
h

)3

−
( ε
h

)4
]
, (4.9)

where the dimensionless Hamaker constant is given by

A =
ρASLV

18πµ2ε3L
. (4.10)

The intermolecular pressure described above can be combined with surface-tension effects

(see §2.2.3) into a single dimensionless pressure:

p = −S ∂
2h

∂x2 +A
[( ε
h

)3

−
( ε
h

)4
]
, (4.11)

2Surface tension and intermolecular interactions are reviewed in detail in §2.2.3 and §2.2.4.
3For further discussion about this choice of exponents, see §6.6.6.
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where S is a dimensionless surface tension given by4

S =
ρσh̃4

0

3µ2L3
. (4.12)

Dimensionless parameter Symbol Definition Order of magnitude

Surface tension S ρσh̃4
0

3µ2L3
10−8

Intermolecular attraction A ρASLVh̃
3
0

18πµ2ε̃3L
10−6

Diffusivity D ρDh̃0

µL
10−6

Transport coefficient α
18πµDε̃3

ASLVh̃2
0

1

Table 4.2: Relevant dimensionless groups for the binary thin film. The order of magnitude estimate for parameter
values is based on the material properties of methanol (see Tbl. C.2).

4.4 Needle velocity

Needle growth is assumed to be diffusion-limited as discussed in §2.3.3. The needle velocity

given by Eq. (2.17) can be rewritten using the dimensionless parameters defined in Tbl. 4.1,

such that5

vtip = −D ∂φ

∂x

∣∣∣∣
tip

. (4.13)

4.5 Rescaled governing equations

Following Kao, Golovin, and Davis [48], we can eliminate the dimensionless parametersA and

S from the pressure equation, Eq. (4.11), by introducing length and time scales proportional

to the most-unstable wavelength and characteristic time of spinodal-dewetting (see physics

4By a strange coincidence, S has the form of the inverse square of the Ohnesorge number, which measures
viscous forces relative to the square root of inertia and surface tension forces. Inertia popped into the equation
by way of the viscous velocity scale, ν/L.

5The multiplier (φsolid−φtip)−1 from Eq. (2.17) disappears because (φsolid−φtip) = −1 by definition (see
Fig. 4-2).
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of spinodal-dewetting in §2.2.5):

x̂ =

√
A
S x, t̂ =

A2

S t. (4.14)

Substituting these new scales into Eq. (4.3), Eq. (4.7), and Eq. (4.11) gives the rescaled

evolution equations for the thin film and solvent-mass, and the pressure equation:

∂h

∂t̂
=

∂

∂x̂

(
h3 ∂p̂

∂x̂

)
, (4.15a)

∂(φh)

∂t̂
=

∂

∂x̂

(
αh

∂φ

∂x̂
+ φh3 ∂p̂

∂x̂

)
, (4.15b)

p̂ = −∂
2h

∂x̂2 +

[( ε
h

)3

−
( ε
h

)4
]
. (4.15c)

Here, the solvent evolution equation introduces the dimensionless, transport coefficient

α =
D
A . (4.16)

This transport coefficient measures the speed of diffusion relative to the speed of coarsening.

Note that rescaling by x̂ and t̂ has altered the pressure equation, but leaves h, ε, and φ

unchanged.

Lastly, we substitute the rescaled coordinate and time into Eq. (4.13) to find the rescaled

needle velocity6

v̂tip = −α ∂φ

∂x̂

∣∣∣∣
tip

. (4.17)

4.5.1 Simulation parameters

This rescaling has reduced three parameters—A, S, and D—to a single parameter, α. The

rescaled x̂ and t̂ and the transport coefficient, α, can be rewritten in terms of dimensional

6Note that v̂tip = ∂x̂tip/∂t̂, such that v̂tip = (
√
S/A
√
A)vtip.
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variables:

x̂ =

√
ASLV

6πσε̃3h̃0

x̃, (4.18)

t̂ =
A2

SLVh̃0

108π2µσε̃6
t̃, (4.19)

α =
18πµDε̃3

ASLVh̃2
0

, (4.20)

where x̃ and t̃ are the dimensional coordinate and time.

The resulting mathematical model contains four dimensionless parameters:

• α, the transport coefficient, which measures diffusion relative to coarsening

• hsolid, the height of the solid needle

• φ0, the initial solvent-concentration

• ε, the equilibrium film-thickness

4.6 Numerical implementation

The governing equations were solved numerically using centered-finite-differences and fully-

implicit time-steps [78]. An adaptive, PID control-scheme [97] varied the time-steps to

minimize solution times. The numerical simulation is broken up into two steps: 1) solving

the governing equations and 2) advancing the needle tip.

To calculate the thickness and concentration profiles at a given time step, we solve the

governing equations, Eq. (4.3), Eq. (4.7), and Eq. (4.11).7 During this time, we enforce

no-flux boundary conditions at both the right edge of the fluid domain and the needle tip,

which enters from the left edge of the domain. Note that the tip-position is fixed in place

during this time.

After evolving the film-thickness and solvent-concentration, we advance the needle tip

using the tip velocity, given by Eq. (4.13). The advancing needle consumes fluid with a

composition φsolid. This consumption alters the thickness and concentration of the cells

7Note that we solve the dimensionless equations instead of the non-rescaled equations. The dimensionless
equations are in a form that allow concentration-dependent Hamaker constant, ASLV, and surface tension,
σ. These dependencies, however, were not explored in this thesis
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vtip∆t

Figure 4-3: Finite-difference discretization near the needle tip. Growth of the needle distorts the finite-difference
mesh.

nearest the needle tip; the film-thickness and solvent-concentration far from needle remain

fixed. In addition, the growing needle shrinks the fluid domain and distorts the finite-

difference mesh nearest the tip, as shown in Fig. 4-3. Details of the boundary condition at

the needle tip are discussed in §B.7.

Further details of the numerical implementation, including finite-difference equations, are

discussed in Appendix B.
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Chapter 5

Analytical Results

In this chapter, we seek analytical solutions to the mathematical model presented in Chap-

ter 4. In the first section, we derive relations for spinodal-dewetting and droplet-coarsening.

In the following four sections, we derive simple scaling-laws to describe the growth of Alq3-

needles. To that end, we simplify the system by considering high and low limits of the

transport coefficient, α, and large and small values of the needle height, hsolid.

5.1 Dewetting and Coarsening

In this section, we derive relations for spinodal-dewetting and droplet-coarsening. Dewetting

relations are derived from linear-stability analysis, as has been done in other studies of

dewetting thin, liquid films (see e.g., Oron, Davis, and Bankoff [74]). The coarsening analysis

follows the analysis Glasner and Witelski [38].

5.1.1 Dewetting instability

Here, we compute the most unstable wavelength, and time-scale of the spinodal-dewetting

instability (as described in §2.2.5) using linear-stability analysis.
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Dispersion relation

Consider a film height with a small sinusoidal perturbation:1

h = 1 + δeik̂x̂+ω̂t̂,

where δ � 1 is the amplitude of the sinusoidal perturbation with wavenumber k̂ and growth

rate (of the instability) ω̂. Substituting this h into the thin-film equations (Eq. (4.15a) and

Eq. (4.15c)), and keeping the terms that are linear in δ, gives the dispersion relation2

ω̂ + k̂2(−3ε3 + 4ε4) + k̂4 +O(δ) = 0. (5.1)

This dispersion relation is plotted in Fig. 5-1.

k ∗
wavenumber, k

ω ∗

gr
ow

th
 ra

te
, ω

Figure 5-1: Dispersion relation for dewetting instability

Most unstable wavelength

The maximum growth rate is given by ∂ω/∂k = 0 (as shown in Fig. 5-1), which leads to the

most unstable wavenumber:

k̂∗ =

√
3ε3 − 4ε4

2
. (5.2)

Because the term inside the square root cannot be negative, instability requires that ε < 3/4;

otherwise, the film is stable and does not dewet.

1Recall that h is the dimensionless film thickness, and thus, has an initial value of 1.
2The h−3 and h−4 terms required the Taylor-series expansion (1 + u)−1 ≈ 1− u+O(u2), in which u is a

small parameter.
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The most unstable wavelength of the instability is deduced from the wavenumber:

λ̂∗ =
2π

k̂∗
= 2π

√
2

3ε3 − 4ε4
. (5.3)

This wavelength sets the initial size of droplets as the thin film transforms from its initially-

uniform thickness.

Characteristic time scale for dewetting

To calculate the growth rate of the dewetting instability, we substitute the wavenumber,

Eq. (5.2), into the dispersion relation, Eq. (5.1), which gives the growth rate ω̂∗ = (3ε3 −
4ε4)2/4. The corresponding time scale for dewetting is simply

τ̂∗ =
1

ω̂∗
=

4

(3ε3 − 4ε4)2
. (5.4)

Dimensional wavelength and time-scale of dewetting

The wavelength given in Equation (5.3) has been nondimensionalized by a characteristic

length L, and rescaled by
√
A/S (see Eq. (4.14)); thus, the dimensional, most-unstable

wavelength for the dewetting instability, λ̃∗, is related by

λ̃∗ = λ̂∗L

√
S
A . (5.5)

Similarly, the time-scale of dewetting has been nondimensionalized by a characteristic

time ρh̃0L/µ (see Tbl. 4.1) and rescaled by A2/S (see Eq. (4.14)); thus, the dimensional,

characteristic time-scale for dewetting is

τ̃∗ = τ̂∗
ρh̃0L

µ

S
A2

. (5.6)

5.1.2 Drop coarsening

Here, we compute the typical pressure, separation, and volume of drops—given by 〈P 〉, 〈L〉,
and 〈V〉—during the course of drop coarsening.
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Pressure evolution equation

Following the work of Glasner and Witelski [38], we derive an equation describing the evo-

lution of the pressure of the kth droplet (see Fig. 5-2).

Pk

Pk+1Pk−1

ε

L+L−

Figure 5-2: Schematic of a collapsing droplet. The kth drop is slightly smaller than adjacent drops; thus, it has
a higher pressure. This pressure gradient drives flow away from the drop leading to its collapse.

From mass conservation, we know that the change in volume of the kth drop, Vk, is equal

to the net flux into the drop, such that

∂Vk

∂t
= −(Q+ −Q−), (5.7)

where Q+ is the flux between the k and k + 1 drops, and Q− is the flux between the k − 1

and k drops. If the thickness of the ultra-thin film connecting droplets is approximately, ε,3

then the volumetric flux (given by Eq. (4.2)) simplifies to

Q+ ≈ −ε3Pk+1 − Pk
L+

.

To derive the pressure evolution equation, we note that for sufficiently-large drops, surface

tension dominates intermolecular interactions, such that a drop is approximately parabolic;

this approximation gives a direct relation between the droplet volume (per unit depth) and

3Note that the thickness of the wetting layer must me thicker than ε to balance the positive pressure in
adjacent drops. The intermolecular pressure rises sharply for small changes in h, so the deviation from ε is
small.
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drop pressure:4 Vk ∼ Pk
−2. Recalling the chain rule of differentiation, we find that

∂Vk

∂t
=
∂Vk

∂Pk

∂Pk
∂t
∼ ∂Pk

∂t
Pk
−3.

Combining the three previous equations gives

dPk
dt
∼ ε3Pk

3

[
Pk+1 − Pk

L+

− Pk − Pk−1

L−

]
. (5.8)

Collapse of kth drop

If the collapsing droplet, k, is much smaller than the typical droplet, then Pk � 〈P 〉, where

the pressure of the typical drop is 〈P 〉 ≈ Pk+1 ≈ Pk−1. Thus, the pressure evolution equation,

Eq. (5.8), simplifies to
dPk
dt
∼ − 1

〈L〉Pk
4,

where L+ ≈ L− ≈ 〈L〉, and 〈L〉 is the average spacing between droplets. Integration gives

Pk
−3 ∼ 1

〈L〉(Tc − t),

where Tc is the time of drop collapse.

If the initial pressure of the drop is equal to the average droplet pressure, 〈P 〉, then the

collapse time scales like

Tc ∼ 〈P 〉−3 L.

From §5.1.2, we know the droplet volume scales like 〈V〉 ∼ 〈P 〉−2. Additionally, conservation

of mass5 tells us that 〈V〉 ∼ N−1 and 〈L〉 ∼ N−1. Substituting these scalings gives

Tc ∼ N−3/2N−1 ∼ N−5/2.

4The drop is parabolic, such that 〈h〉 ∼ 1
2 〈p〉 (〈w〉

2 − x2). The width of the drop, 〈w〉 ∼ 〈p〉−1, such that

〈m〉 =
∫ 〈w〉
−〈w〉 〈h〉 dx ∼ 〈p〉−2. See Glasner and Witelski [38, §II] for details.

5Imagine a distribution of equally-sized, evenly distributed droplets. If every-other drop collapses and
coalesces with its neighbor, there will be half the number of drops. The new super droplets will be twice the
volume; and the spacing between drops will be twice as great.
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Scaling laws

Averaged out over many droplet collapses, the rate of change of droplets scales like dN/ dt ∼
−N/Tc ∼ −N7/2. Integrating in time gives

N ∼ t−2/5. (5.9)

Using this scaling, we find that the typical drop pressure, drop spacing, and drop volume

scale as

〈P 〉 ∼ t−1/5,

〈L〉 ∼ t2/5,

〈V〉 ∼ t2/5.

(5.10)

This section has focused on the formation and evolution of drops in the thin film. In

contrast, the remaining sections in this chapter focus on the growth of needles.

5.2 High α-values: diffusion-dominated needle growth

In the high-α limit, transport is dominated by diffusion, such that the solvent-mass equation,

Eq. (4.15b), simplifies to6

∂φ

∂t̂
= α

∂2φ

∂x̂2 . (5.11)

The above is simply the diffusion equation in one dimension.

To find the tip position as a function of time, we assume a semi-infinite domain (the fluid

domain extends to infinity). The diffusion equation, Eq. (5.11), with boundary and initial

conditions:

φ(x̂, 0) = φ0, for x̂ > x̂tip,

φ(x̂tip, t̂) = 1,

φ(∞, t̂) = φ0,

6Since diffusion is much faster than convection, changes in concentration dominate those in the film-
thickness, such that ∂(φh)/∂t ≈ h ∂φ/∂t.
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can be solved with an error function of the form

φ(x̂, t̂) = a1 + a2 erf

(
x̂√
4αt̂

)
,

where a1 and a2 are constants that depend on the boundary and initial conditions. Applying

the boundary condition φ(x̂tip, t̂) = 1, we find that

1 = a1 + a2 erf

(
x̂tip√
4αt̂

)
.

For the above relation to be valid at all times (as the boundary condition requires), the time

dependence must disappear from the argument of the error function, such that

Lneedle ∼ t̂1/2. (5.12)

Here, Lneedle ≡ x̂tip, if x̂tip(t = 0) = 0.

For an exact expression of one-dimensional, diffusional growth, see Kinetics of Materi-

als [3, §20.1.2].

5.3 Low α-values: coarsening-dominated needle growth

For low α-values, droplets collapse rapidly compared to diffusion and drive fluid flow through

the liquid film. This flow carries solvent through the film faster than diffusion; nevertheless,

it would be misleading to suggest that diffusion is negligible in this limit because the needle

velocity is a function of the concentration gradient at the tip.

As shown in Fig. 5-3, a meniscus region connects the needle tip to an ultra-thin film—

which we dub the “wetting layer”—with a thickness of approximately ε. The meniscus has

a length, Lm, and the concentration at the edge of the meniscus is φm (see Fig. 5-3). In the

following analysis, we seek a needle length that scales like a power law in time. To that end,

we assume that Lm and ∆φ = 1 − φm (the difference in concentration7 between the needle

7Why do we define ∆φ (instead of φm) as a power-law, you ask. A power-law can describe quantities that
grow without bound (positive exponents) or approach zero (negative exponents). Whereas ∆φ asymptotes
to zero, φm approaches one; thus, ∆φ is more suited to power-law relations.
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ε

Lm

xm

hsolid

xtip

φm
1

0

−Qwet

Figure 5-3: A meniscus connects the needle tip to a thin wetting layer with approximate thickness ε. Fluid flux
across the right edge of the meniscus, xm, is given by Qwet. On the left edge, Alq3 leaves the the meniscus as
it solidifies into the solid crystal needle.

tip and meniscus edge) grow like power laws:8

Lm ∼ ta, (5.13a)

∆φ ∼ t−b, (5.13b)

where exponents a and b are positive. As solvent builds up in front of the needle, φm

approaches 1, such that ∆φ→ 0; this leads to the decaying power law shown above.

5.3.1 Mass conservation at the growing needle tip

When a droplet near the needle collapses, fluid in that drop is driven toward the needle

tip. However, not all of that fluid can be incorporated into the needle since it has a specific

composition, φsolid = 0. Since the needle is solvent-poor, left-over solvent builds up in front

of the needle tip and slows needle growth. Thus, needle growth is governed by a balance

between the flux of fluid toward and diffusion of solvent away from the needle tip. In addition,

the meniscus at the tip of the needle can grow to incorporate fluid from collapsing drops.

Applying mass conservation gives9

vtiphsolid + V̇m ≈ −Qwet, (5.14)

8In simulations, Lm and ∆φ exhibit power-law behavior, so this is a pretty good assumption.
9Rigorous analysis would show that there should be a vtipε term on the right-hand-side because we

take a reference frame that moves with the needle tip. But moving this term to the left-hand-side gives
vtip(hsolid − ε) ≈ vtiphsolid.
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where Qwet is the flux through the wetting layer, vtip is the needle velocity, and V̇m is the

time derivative of the meniscus volume.

The needle velocity, given by Eq. (4.17), can be approximated as10

vtip ≈ −α
φm − 1

Lm
∼ ∆φ

Lm
∼ t−a−b. (5.15)

When the needle tip is large, the majority of the meniscus is much higher than the

equilibrium thin-film height, ε. Thus, surface-tension effects dominate intermolecular forces,

such that the meniscus is approximately parabolic:

h ≈ (hsolid − ε)
(
x− xm
Lm

)2

+ ε.

To solve for the fluid volume in the meniscus, integrate the thickness profile:

Vm =

∫ xm

xtip

h dx = 1
3
(hsolid + 2ε)Lm.

Thus, the time-rate of change of volume is

V̇m = 1
3
(hsolid + 2ε)L̇m ∼ ta−1. (5.16)

xw

L̄

P̄P1Pm

Lm

xmxtip

ε
hsolid

Lwet

Figure 5-4: Schematic of needle growing from left to right. A meniscus, with pressure Pm, connects the needle
tip and a thin wetting layer. Fluid flow to the needle is driven by the pressure difference between the meniscus
and the drop closest to the needle tip—i.e., the first drop.

The fluid flow through the wetting layer depends on the length of the wetting layer, Lwet;

the pressure in the meniscus, Pm; and the pressure of the first drop, P1 (see Fig. 5-4). Thus,

10Note that the negative sign cancels because φm − 1 = −∆φ.
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the fluid flux, given by Eq. (4.2), can be approximated by

Qwet = −h3 ∂p̂

∂x̂
∼ −ε3P1 − Pm

Lwet

. (5.17)

The positive curvature of the meniscus at the needle creates a low pressure region, while the

negative curvature of the drop closest to the needle tip—i.e., the first drop—creates a high

pressure region. Thus, flow is driven toward the needle, such that Qwet is negative.

In the following sections, we derive expressions for this fluid flux, which depends on the

height of the needle relative to the fluid film.

5.4 Needle growth for low α-values and small hsolid

Figure 5-5: Schematic of a small needle: needles that are roughly the same size as the typical droplet are
dubbed “small”.

When the height of the needle, hsolid, is roughly the same size as (or smaller than) the

typical drop, as shown in Fig. 5-5, we say the needle is “small”. In this limit, the pressure

in the meniscus is comparable to that of the typical drop, 〈P 〉, and the distance from the

needle tip to the first drop is comparable to the typical drop spacing, 〈L〉; thus, the flux

through the film—given by Eq. (5.17)—simplifies to Qwet ∼ −ε3 〈P 〉 / 〈L〉. From Eq. (5.10),

〈P 〉 ∼ t−1/5 and 〈L〉 ∼ t2/5, such that

Qwet ∼ t−3/5.

Moderate meniscus pressures correspond to meniscus lengths that are insensitive to pres-

sure variations, as can be deduced from Eq. (5.19). Thus, the change in meniscus volume is
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negligible in this small hsolid regime, and Eq. (5.14) simplifies to

vtip ∼ Qwet ∼ t−3/5.

Finally, integrating once in time gives a needle length that scales as

Lneedle ∼ t2/5. (5.18)

5.5 Needle growth for low α-values and large hsolid

Figure 5-6: Schematic of a large needle: needles that are larger than the typical droplet are dubbed “large”.

Here, we solve for the needle length as a function of time for α-values much smaller than

1 and large needle heights, hsolid. Here, “large” needle heights suggest that the needle is

much larger than the typical drop, as shown in Fig. 5-6.

5.5.1 Flux through the wetting layer

In this section, we derive a power-law relation for the flux through the wetting layer, Qwet,

given by Eq. (5.17). For large hsolid, the magnitude of the pressure in the meniscus is large

compared to that in the drops; i.e., |Pm| � |P1|. Thus, to derive an expression for the flux

through the wetting layer, we need expressions for the meniscus pressure, Pm, and the length

of the wetting layer, Lwet.

Meniscus pressure

If the needle tip is large, the meniscus height is far from the ultra-thin-film thickness (which

is approximately ε), such that surface tension dominates and the meniscus is approximately
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parabolic; thus, we can relate the meniscus pressure to the length of the meniscus:

Pm ∼ −
hsolid − ε
Lm

2 . (5.19)

Since only Lm is time-dependent, we can write

Pm ∼ −t−2a. (5.20)

Collapse time of the first-drop

At early times |Pm| � |P1|, | 〈P 〉 |, such that the pressure evolution equation, Eq. (5.8),

simplifies to
dP1

dt
∼ ε3

Lwet

P1
3Pm. (5.21)

The wetting layer grows when the kth first-droplet collapses, at which time Lwet
k+1 =

Lwet
k + 〈L〉k, as depicted in Fig. 5-7. Before the collapse, the length of the wetting layer is

roughly constant.11 In addition, we will assume that the thickness of the wetting layer, is

approximately ε (a time-varying thickness is discussed in §6.4.1).

L̄k

T k
c

t

Lwet

L̄kLk
wet Lk+1

wet

Figure 5-7: Growth of the wetting layer, which separates the needle tip from the droplet region. The wetting
layer grows in discrete steps since the collapse of the nearest drop leads to a finite increase in the wetting layer.

11This assumption is true only if the droplet collapses much faster than the meniscus and the needle grow.
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In the differential equation for P1, we can separate variables and integrate to find

P1
−2 ∼ − 1

Lwet

t1−2a + C.

As the droplet collapses, the pressure should diverge (since small droplets have high pressure);

thus, the droplet pressure can be written as

P1 ∼
[

1

Lwet

(Tc − t)1−2a

]−1/2

,

where Tc is the time period for the collapse of the kth-first-drop. Here, t is measured starting

when the previous first-drop (k − 1) collapses; thus at t = 0, the kth drop should have the

same pressure as a typical drop,12 i.e., P1(t = 0) = 〈P 〉, such that

Tc ∼
(
Lwet 〈P 〉−2)1/(1−2a)

.

Growth of wetting layer

For large needles, the pressure in the meniscus is large (in magnitude) and negative. This

large pressure leads to faster droplet collapses near the needle tip, thus building up a large

wetting layer between the needle tip and the first drop.

The wetting layer grows in discrete steps each time a droplet collapses, as depicted in

Fig. 5-7. This discrete growth can be approximated as a continuous process:

dLwet

dt
∼ 〈L〉

Tc
. (5.22)

Far away from the needle tip, the dynamics are governed by coarsening effects alone, such

that the typical drop spacing scales as 〈L〉 ∼ t2/5, and pressure scales as 〈P 〉 ∼ t−1/5 (as

derived in §5.1.2). Substitution of these scalings and the meniscus pressure (from Eq. (5.20))

12When the k − 1 drop is the first-drop, the kth drop is shielded from the low pressure meniscus by the
k − 1 drop; thus, kth drop should behave like a typical drop and have a typical pressure 〈P 〉.
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into Eq. (5.22) gives

dLwet

dt
∼ 〈L〉

(
Lwet

−1 〈P 〉2
)1/(1−2a) ∼ Lwet

−1/(1−2a)t−4a/(5−10a).

Separating variables and integrating gives

Lwet ∼ t(5−14a)/(10−10a). (5.23)

5.5.2 Needle growth

For large needle tips |Pm| � | 〈P 〉 |, such that Qwet ∼ ε3Pm/Lwet. Now, substitute scalings

for Pm and Lwet (Eq. (5.20) and Eq. (5.23)) to get

Qwet ∼ −t−(5+6a−20a2)/(10−10a). (5.24)

Note that Qwet is negative because the flux moves in the negative x-direction.

We now return to the mass conservation equation, Eq. (5.14), and substitute in the

power-law scalings for the needle velocity, Eq. (5.15); meniscus mass, Eq. (5.16); and flux,

Eq. (5.24); which gives

t−a−b + ta−1 ∼ t−(5+6a−20a2)/(10−10a).

All terms balance when a ≈ 0.29 and b ≈ 0.42, such that the needle velocity scales like

vtip ∼ t−0.71. Finally, integrating once in time gives a needle length which scales as

Lneedle ∼ t0.29. (5.25)

This scaling law, along with those derived above, are summarized in Tbl. 5.1.
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scaling law

high α Lneedle ∼ t1/2

low α, small needle Lneedle ∼ t2/5

low α, large needle Lneedle ∼ t0.29

Table 5.1: Scaling laws for needle growth for high α-values (all needle heights) and for low α-values—both
small and large needle heights.
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Chapter 6

Results and Discussion

6.1 Overview

This chapter presents the results of experiments and simulations, with comparisons to the

analytical results from Chapter 5.

6.1.1 Experiments

Figure 6-1 shows a glass substrate after a 3 hour anneal. The substrate is covered with

thousands of microscopic Alq3 needles. Micrographs of the substrate show crystals grow-

ing within a few minutes of beginning the annealing process. The crystal needles tend to

grow in clusters surrounding a common nucleation point. These nucleation sites were not

seeded; instead, it appears they come from imperfections during deposition or, possibly, from

particulate contamination during handling.

In the following experiments, the thickness of the deposited Alq3 film, h̃Alq,1 is varied

from 15–60 nm; the influence of h̃Alq on simulation parameters is discussed in §6.1.3. No

other experimental parameters are varied in this thesis. The following discussion assumes

that solvent-vapor saturates the annealing chamber at short times compared to the time

scale of the experiment.2 Further details of the experimental setup and data analysis are

1h̃Alq should not be confused with the initial thickness h̃0, which is the thickness of the film after solvent
is combined with Alq3.

2The small annealing chamber (see Fig. 3-3) limits air flow, so that solvent-vapor transport is dominated
by diffusion. For diffusion in vapor, the diffusivity is on the order of D ≈ 0.1 cm2/s (10−5 m2/s) [68]. The
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presented in Chapter 3.

1 mm

50 µm

camera

Figure 6-1: Glass substrate after annealing for 3 hours. Needles usually grow in clusters, surrounding a region
favorable to nucleation, as shown in the magnified image in the bottom-left. The clear, circular regions on the
substrate mark where methanol accidentally splashed onto the substrate during setup.

6.1.2 Simulations

The numerical simulations solve the evolving thin-film thickness and solvent concentration,

as described in Chapter 4. At the start of the simulation, a seed of solid Alq3 is placed at the

left edge of the domain3 (i.e., 0 ≤ x ≤ xtip); as a result, nucleation is not examined in this

study. All simulations presented here are initialized with a uniform solvent-concentration in

the fluid domain (i.e., φ0 = constant for x > xtip). The thin-film thickness was initialized

with h0 = 1 + δ(x), where δ(x) are spatially-varying, small, random values4 that add noise

(i.e., roughness) to the initial condition.

diffusive time scale, T = L2/D (recall Eq. (2.2)), states that solvent molecules will travel 4 cm (roughly the
size of the chamber) in about 3 minutes; which is much shorter than the time-scale of experiments (i.e.,
hours).

3In other words, a node at the left edge of the domain was given values h = hsolid and φ = φsolid at t = 0.
4In practice, δ(x) has a uniform distribution with a magnitude of 0.1 (i.e., approximately 1/10th of the

initial film thickness).
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The resulting solutions depend on the main parameters of the simulation: ε, φ0, hsolid,

and α; the following results explore a range of values as described in Tbl. 6.1.

Parameter Description Values

α transport coefficient 10−4–101

hsolid height of crystal needle 1–64
φ0 initial concentration 0.1–0.9
ε equilibrium film thickness 0.05–0.75

Table 6.1: Range of dimensionless parameters explored in simulations

6.1.3 Comparing simulations and experiments

Exact comparison between simulations and experiments is limited because of limited ther-

modynamic data for solvent-Alq3 interactions; this problem is common in solvent-molecule

solutions, as noted by Rabani et al. [79]. Instead, we leave material properties as fitting

parameters in comparisons between simulations and experiments.

In experiments, we vary the thickness of the deposited Alq3 film, h̃Alq. On the other hand,

simulations depend on the thickness of the mixture (i.e., Alq3 plus solvent) h̃0. In much of

the following, we assume that h̃0 ∼ h̃Alq.5 Thus, the Alq3 thickness, h̃Alq, can influence any

of the simulation parameters in Tbl. 6.1:

• The transport coefficient (Eq. (4.18)): α ∼ h̃−2
0 ∼ h̃−2

Alq. This dependence is discussed

further in §6.2.3.

• The height of the crystal: hsolid = h̃solid/h̃0 ∼ h̃−1
Alq.

• The initial concentration, φ0, could vary with h̃Alq if the increase in Alq3 is not matched

by a proportional increase in solvent condensation during annealing.

• The equilibrium film thickness: ε = ε̃/h̃0 ∼ h̃−1
Alq

5This assumption is equivalent to assuming that solvent-vapor condensation is dominated by Alq3-solvent
interactions. Thus, doubling the Alq3-film thickness would double the amount of solvent condensation.
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6.2 Needle Growth

In experiments, we measure the growth of needles while varying the initial Alq3-film thick-

ness, h̃Alq. In simulations, we examine needle growth as a function of each simulation pa-

rameter (ε, φ0, hsolid, and α), while holding all other parameters constant. §C.2 provides

additional details on growth regimes observed in simulations.

6.2.1 Evolution of needle lengths in experiments
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Figure 6-2: Evolution of needle lengths for a 15 nm thick Alq3 film. The blue curve shows the steady growth
of an unobstructed needle; the red curve shows the evolution of a needle that is obstructed by other growing
needles.

In experiments, needle lengths are measured during solvent-vapor annealing, as described

in §3.4. Figure 6-2 shows the evolution of two representative needles growing from a 15 nm

Alq3-film. The blue curve (which is the same needle as in Fig. 3-5) shows the steady growth

of a needle, with a slope of 2/5. Because both axes of the plot are logarithmic, this curve

suggests a power-law growth

Lneedle ∼ tγ

with a growth-exponent γ = 2/5. Since 0 < γ < 1, needle growth slows down over time; this

slowing-of-growth reflects the depletion of liquid Alq3 over time (due to solidification). At
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late times, the growth saturates (i.e., the needle stops growing) as nearby Alq3 is consumed

by adjacent needles.

The red curve in Fig. 6-2 shows the evolution of a needle that is obstructed by other

growing needles; this needle grows more slowly and is poorly-fit by a power-law. In the fol-

lowing analysis, obstructed needles have been filtered from the data. This filtering facilitates

comparison with simulations, in which we ignore needle interactions. An example of this

filtering is shown in §C.1.
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Figure 6-3: Histogram of growth exponents from solvent-annealing experiments on a 30 nm Alq3 film.

Despite filtering out interaction-effects, needles exhibited variable growth-exponents un-

der identical experimental conditions. Thus, we measure the growth of many needles and

look for statistically significant growth-exponents. Figure 6-3 compares the growth expo-

nent, γ, for 117 Alq3-needles growing from a solvent-annealed Alq3-film with initial thickness

h̃Alq = 30 nm.

6.2.2 Influence Alq3 film thickness, h̃Alq

In experiments, varying the thickness of the deposited Alq3-film affects the growth rates,

nucleation phenomena, and crystal morphology, as shown in Fig. 6-4. Here, we discuss

its influence on the growth of needles; nucleation phenomena and crystal morphology are

discussed in §6.5.
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100 !m

Figure 6-4: Micrographs and histograms for various Alq3 film-thicknesses; increasing thickness from left to
right. Thinner films produced more rectangular needles, while thicker films produced tapered, slightly-curved
needles. In addition, thicker films produced more clustering. These images are taken 45 minutes after the
first-noticeable nucleation events.

Figure 6-4 shows micrographs of growing needles and histograms of their growth expo-

nents, γ, for h̃Alq = 15, 30, and 60 nm. Despite the wide range of γ-values, the histograms

show a strong peak at γ ≈ 0.4 for h̃Alq = 15 nm and γ ≈ 0.3 for h̃Alq = 30 nm. Unfortu-

nately, needle length measurements for thick films (i.e., h̃Alq = 60 nm) were not possible due

to branching of the crystals; see §6.5 for details.

6.2.3 Influence of transport coefficient, α

In simulations, the transport coefficient, α, is analogous to an inverse Sherwood number,

with convection driven by droplet coarsening (which, itself, is driven by the strength of

intermolecular attraction).6 Diffusion dominates at high values of α; while, convection—

fluid flow driven by the collapse of droplets—dominates at low α-values.

Figure 6-5 shows simulation results for hsolid = 16, φ0 = 0.5, and ε = 0.5. At low

α-values, coarsening dominates diffusion; the growth exponent asymptotes to a value of

6Note, however, that for a given α, droplet collapse will slow down, such that the average flow rate due to
coarsening will be a function of time. Thus, regardless of α-value, diffusion will dominate at sufficiently-late
times. See §C.2.1 for details.
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Figure 6-5: Growth exponent as a function of α (hsolid = 16). For high α-values, diffusion dominates and
the growth approaches a power law of t1/2; while, for low α-values, coarsening dominates and needle growth
approaches t0.29.

approximately γ = 0.29, as discussed in §5.5. At high α-values, diffusion dominates, and the

growth exponent asymptotes to a value of approximately γ = 0.5, as discussed in §5.2. In

between these asymptotes, both coarsening and diffusion are significant in the transport of

Alq3 to the needle.
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Figure 6-6: Growth exponents from experiments as a function of α. The gray box extends from the lower to
upper quartile of the experimental data; while the line bisecting the box marks the median of the data. The red
dots mark growth-exponents from simulations.
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6.2.4 Comparing needle growth in simulations and experiments

As discussed in §6.1.3, we can compare simulations and experiments by assuming that the

transport coefficient scales as

α = Ah̃−2
Alq, (6.1)

where A is an unknown constant representing the unknown material properties in α (see

Tbl. 4.2). Using this assumption, Fig. 6-6 compares the simulation results for varying α with

the experimental results for varying h̃Alq, where A in Eq. (6.1) is a fitting parameter. The

gray box extends from the lower to upper quartile of the experimental data; the horizontal

line bisecting the box marks the median of the data.7 The red dots mark growth-exponents

from simulations.

The median of the experimental data matches the trend predicted in simulations, but

there is a noticeable difference in values. In addition, the variance of γ in experiments is

large compared to the range of exponents predicted in simulations. The variance is likely

caused by the randomness of nucleation: the location, orientation, and time of nucleation

is random. This randomness can lead to needles that interfere with each other (as dis-

cussed in §C.1), local concentrations that are not initially-uniform, and needles with different

widths/thicknesses. None of these variations are considered in the present study.

6.2.5 Influence of needle thickness, hsolid

In simulations, the growth exponent is dependent on needle thickness, as discussed in Chap-

ter 5. When the transport coefficient, α, is small, we find that the growth exponent asymp-

totes to a value of γ = 0.4 for small needles (see §5.4) and approximately γ = 0.29 for large

needles (see §5.5). Simulation results for needle heights ranging from hsolid = 1 to 64 match

the asymptotic predictions, as shown in Fig. 6-7.

In experiments, the needle is significantly thicker than the initial Alq3-film thickness.

Figure 6-8 shows the tip of a needle grown from a 15 nm Alq3-film. To capture this image,

the substrate was tilted 60◦ from horizontal.8 As a result of this tilt, the needle thickness

7In other words, the experimental data in Fig. 6-6 is plotted as a box-and-whisker plot, minus the whiskers.
8With no substrate-tilt, you have a top-down view and could not see the needle thickness. With a 90◦,

tilt you could measure the thickness directly, but you would only be able to focus on the very edges of the
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Figure 6-7: Growth exponent as a function of hsolid for low α-values. For thin needles, the growth approaches
a power law of t2/5; while, for low α-values, it approaches t0.29. For all simulations, α = 0.001 and φ0 = 0.5.
For hsolid = 2, ε = 0.65 to decrease the time required to reach equilibrium (see 6.2.7), such that drop collapses
do not interfere with the growth-exponent (see C.2.3); for all other simulations, ε = 0.5.

Figure 6-8: SEM (scanning electron microscope) image of needle tip for a 15 nm Alq3-film. The substrate is
tilted 60◦ from horizontal.

(which reads ∼435 nm in the micrograph) is foreshortened. Accounting for the foreshortening

due to tilt, we find hsolid ≈ (435 sin 60◦)nm ≈ 500 nm.

The needle in Fig. 6-8 is approximately 30 times as thick as the original Alq3-film. Note,

however, that during solvent-annealing, methanol combines with Alq3, such that the thick-

ness of the mixture (i.e., methanol + Alq3) can be significantly thicker than the initial

Alq3-film thickness. This thesis does not directly compare the effect of the needle thickness

in experiments and simulations; note, however, that thicker Alq3-films correspond to thinner

substrate.
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dimensionless needle-heights, hsolid.

6.2.6 Influence of initial concentration, φ0
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Figure 6-9: Needle evolution for different initial concentrations, φ0, and α = 0.01, hsolid = 4, and ε = 0.5. The
growth exponent is the same for all φ0, but films with lower solvent concentrations grow faster than those with
higher concentrations.The jagged behavior for φ0 = 0.1 for early time is a result of numerical instabilities for
fast-growing needles.

In simulations, the initial concentration, φ0, does not affect the growth exponent, but it

does alter the needle velocity. From the Stefan condition (Eq. (2.17)), we know the needle

velocity is proportional to the concentration gradient. The dimensionless concentration is

1 at the tip; thus, lower values of φ0 produce sharper concentration gradients and faster

growing needles, as shown in Fig. 6-9.

Although the needle grows faster for lower φ0, the growth exponent, γ, is unaffected; in

other words, the slopes in Fig. 6-9 are the same for all φ0. Instead, if we say that needle

lengths grow as Lneedle ≈ Atγ, then Fig. 6-9 shows that A is a function of φ0.

Note that the above considers the variation of concentration while holding all other pa-

rameters constant. In practice, varying the concentration can alter the material properties

of the mixture; this, in turn, would alter the transport coefficient, α.
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Figure 6-10: Needle evolution for different equilibrium thickness, ε, and α = 0.01, hsolid = 4, and φ0 = 0.5. The
growth exponent is the same for all ε, but films with smaller equilibrium thicknesses have a longer transient.
Circular markers denote the characteristic dewetting time, τ̂∗, for each curve.

6.2.7 Influence of equilibrium film thickness, ε

In simulations, the equilibrium film thickness, ε, does not affect the growth exponent, but it

does alter the duration of the transient regime, as shown in Fig. 6-10. This transient period

is related to spinodal dewetting (see §2.2.5). The characteristic time for dewetting, τ̂∗, is a

function of ε, as described by equation Eq. (5.4). τ̂∗ is marked on each curve (with a filled

circle). Note that τ̂∗ denotes a characteristic time for dewetting to start ; the transient regime

extends beyond this time until dewetting is complete.

Recall that the thin film is linearly unstable for an equilibrium film thickness ε < 3/4

(as discussed in 5.1.1). For ε > 3/4, the film remains flat and diffusion dominates since fluid

flow is minimal. Figure 6-10 only considers simulations in the unstable regime where the

thin film breaks up into drops.

6.3 Dewetting and coarsening

In the presence of an attractive intermolecular pressure, thin fluid films are subject to a

dewetting instability, which causes a thin film to break up into many, small droplets (for an

extended discussion, see §2.2.5 and §5.1.1). Over time, these small droplets tend to combine
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to form fewer, larger droplets in order to reduce surface energy; this process is known as

coarsening (as discussed in §2.2.6 and §5.1.2).

6.3.1 Dewetting and coarsening in simulations

We can predict a characteristic time for dewetting, τ̂∗, based on Eq. (5.4). For the majority

of simulations in this thesis ε = 0.5 (with the exception of the data presented in §6.2.7),

such that the characteristic time for dewetting instability to develop is τ̂∗ = 256. As shown

in Fig. 6-11(b), this characteristic time marks the initiation of dewetting—drops are just

beginning to form at this time.
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(a) Number of drops in a film of dimensionless
length 3000. After a transient period, the number
of drops roughly decays as N ∼ t−2/5, as predicted.

t̂=256

t̂=1000

t̂=1000000

(b) Region of film near the needle tip showing the ini-
tiation of dewetting at t̂ = τ̂∗ = 256 (top), and how
coarsening affects the drop size and spacing at t̂ = 1000
and t̂ = 106.

Figure 6-11: Droplet dewetting and coarsening in simulation with dimensionless domain size 3000 and needle
height hsolid = 2.

Coarsening drives small drops to coalesce into fewer, larger droplets as shown in Fig. 6-

11(b). In the absence of a growing needle tip, coarsening diminishes the number of drops,

N , such that N ∼ t−2/5 (Eq. (5.9)). For thin needles—where the needle height is comparable

to drop heights—the needle does not noticeably affect coarsening, and coarsening proceeds

as if the needle is not present, as shown in Fig. 6-11(a).
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6.3.2 Dewetting and coarsening in experiments

In experiments, the initially-uniform thin film breaks up into dark drops, as shown in Fig. 3-

1. To get an approximation for the spacing between drops, we can substitute the material

parameters for methanol (see Tbl. C.2) into Eq. (5.5), such that λ̃0 ≈ 1 to 10µm. In exper-

iments, the smallest-observed wavelength was λ̃0 ≈ 1µm, which is roughly the resolution of

the images captured during annealing (as discussed in §6.6.1). The initial instability could,

however, produce smaller drops/wavelengths that are not observed because of this optical

limitation.

Coarsening in experiments is minimal: The wavelength of drops appears to double over

the course of most experiments.9 The slow coarsening behavior matches that of thermally-

annealed polymer films, which exhibit coarsening that is slowed compared to experimental

time scales [92].

As discussed in §2.2.6, coarsening is caused by either drop collapse or drop collision; this

difference is governed by the equilibrium thin-film thickness,10 ε (see Glasner [37]). Collision

dominates for small ε, and collapse dominates as ε→ 1. To match experiments, simulation

parameters are set to limit coarsening to the collapse-dominated regime.

6.4 Growth of the wetting layer

For very large needles, we predict that the wetting layer grows faster than the typical sep-

aration between drops. The analysis in §5.5.1, however, has a major flaw: it relies on a

time-invariant thickness of the wetting layer. This section accounts for a time-varying ε and

compares the growth of the wetting layer from simulations to that predicted in §5.5.1. In ex-

periments, the wetting layer at the needle tip is no more than a few micron in length; because

of optical limitations (see §6.6.1), the wetting layer was not measured in experiments.

9Drop sizes after the initial dewetting appear to be smaller than the resolution of the images, so it is
difficult to measure coarsening in these experiments.

10A dimensionless parameter, C, is defined in Glasner [37]: C ≡ K/ ln R ∼ 1/ε
√
| ln ε|. When C . 10,

collisions are negligible compared to collapse. When C & 10, collisions become more common and C & 100,
collisions dominate.
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6.4.1 Variation of the wetting-layer thickness for large hsolid

When the magnitude of the meniscus pressure (Pm) is large, the low pressure at the meniscus

reduces the thickness of the wetting layer below the equilibrium value, such that hmin < ε

(see Fig. 6-12). This variation is negligible when calculating the flux, Qwet: Qwet ∼ ε3/Lwet,

but, since Lwet ∼ ε3, the dependence on ε cancels.11 Variations in ε do, however, alter the

scaling of Lwet.

Figure 6-12: Wetting-layer for very large needle heights. The red, dashed line marks the equilibrium film-
thickness, ε. Needle and meniscus (left) extend above the frame. The large needle height produces a wetting
layer that drops well below ε to match to the low pressure in the meniscus. Note that the film connecting the
two drops on the left has a thickness ∼ε.

Since the wetting layer is nearly flat, the pressure is dominated by intermolecular forces,

such that Π(hmin) ≈ Pm(hmin). For large-negative and large-positive pressures, the thickness

and pressure are readily related by power laws,12 but this is not true for pressures around

zero. To approximate a power law, we take the logarithm of the intermolecular pressure,

Eq. (4.9), and expand that expression using a Taylor series:13

r =
d(logP )

d(log h)

∣∣∣∣
h=hmin,0

=
−3hmin,0

−3 + 4hmin,0
−4

hmin,0
−3 − hmin,0

−4 ,

such that hmin ∼ Pm
1/r. For large, negative pressures, films are much thinner than the

equilibrium thickness, ε, and hmin ∼ Pm
−1/4. As the pressure approaches zero, the thin film

approaches ε, and r approaches infinity, such that hmin → Pm
0 (i.e., hmin is approximately

constant, with respect to pressure). But for moderate pressures,14 −8 < r < −5, such that

11Equation (5.21) gives Lwet ∼ ε3Ṗ−1
1 P1

3Pm ∼ ε3.
12Pm ∼ h−4 when h� 1, and Pm ∼ h−3 when h� 1
13Actually, you have to replace h with η = log h and expand the logarithm of the intermolecular pressure

about some arbitrary value of η0 = log hmin,0. Otherwise, you’d get an expression for d(logP )/dh instead
of d(logP )/ d(log h).

14These pressures and film thicknesses are quite reasonable in theory. Recall that Pm ∼ −hsolid/Lm
2; in

simulations, the length of the meniscus rarely goes below unity and the height of the solid goes from 2 to
32. For r = −5, Pm = −8 and hmin = ε/2, and for r = −8, Pm = −0.5 and hmin = 0.8ε.
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Pm
−1/8 < hmin < Pm

−1/5. Now replace ε in Eq. (5.21) with a time varying hmin, such that

Lwet gives t0.34 < Lwet < t0.44.15

6.4.2 Growth of the wetting layer in simulations
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Figure 6-13: Growth of wetting layer, which separates the needle tip and the droplet region. The discrete jumps
in the length correspond to the collapse of the drop nearest the needle tip; after a collapse, the wetting-layer
length increases discontinuously by the spacing separating the first and second drops.

As shown in Fig. 6-13, the predicted scaling of the wetting layer, t0.34 < Lwet < t0.44,

matches well with simulations. Note that the wetting layer grows by discrete increments:

when the drop nearest the needle collapses, Lwet extends to the next-nearest drop. See

Fig. 5-7 for a graphical description.

6.5 Crystal nucleation and morphology in experiments

In experiments, multiple crystal needles tend to nucleate around a common nucleation site,

as shown in Fig. 6-14. These needles are rectangular in shape for thin films, but for thicker

films, the needle shape becomes irregular.

15As noted before, the flux through the wetting layer is relatively unchanged, remaining between t0.29 and
t0.30 in this range.
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10 !m

Figure 6-14: SEM image of needles growing from a common nucleation site after solvent-annealing a film with
h̃Alq = 15 nm.

6.5.1 Nucleation sites and hole formation

Experiments reveal that crystal needles tend to nucleate in clusters. These nucleation sites

are observed well before the first observable needles, as shown in Fig. 6-15. At early times,

the nucleation sites appear as clear spots with an irregular edge, i.e., a splotch.

450 s 1500 s 2100 s 3600 s

100 !m

Figure 6-15: Possible hole formation in thick Alq3 films. For a 60 nm thick Alq3-film, annealing produced clear,
roughly-circular regions at early times. The edges of these clear regions served as nucleation sites for needles.

One possible cause of these splotches is the nucleation of holes in the fluid film, as

discussed in §2.2.5. Although splotches were sometimes observed in thin films, as shown in

Fig. 6-16, they were more common and more densely packed in thicker films, as shown in

Fig. 6-15. This trend matches theoretical predictions, which suggest that thicker films are

more likely to dewet due to nucleation of holes rather than spinodal-dewetting.

The splotches shown in Fig. 6-16 are similar in appearance to the holes in the simulations

and experiments of Becker et al. [4] (see Fig. 2-10). Their simulations and experiments
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Figure 6-16: Micrograph of splotches on a substrate after annealing a 15 nm Alq3 film for 1 hour. Although
not apparent here, these splotches tend to be nucleation sites for needles, as shown in Fig. 6-15.

demonstrated that growing holes form a ridge of excess fluid around the hole-perimeter.

This build-up of fluid could explain how needles can grow to be significantly thicker than

the initial Alq3 film, as discussed in §6.2.5.

6.5.2 Influence of solvent concentration on nucleation

In addition to the solvent-vapor annealing experiments, we conducted wetting experiments,

where one end of the substrate contacted a reservoir of liquid solvent, as shown in Fig. 6-

17. These experiments suggest that nucleation is concentration-dependent. Near the liquid

reservoir, crystal nucleation was minimal, while farther away, many crystals nucleated. Very

far away (not shown), the film took on the appearance of droplets with no noticeable needles.

These results suggest that there is an optimal concentration for needle nucleation: for low

solvent-concentration, the driving force for nucleation is high (analogous to high supercool-

ing in melts), but the mobility of Alq3 is low; conversely, for high solvent-concentration,

the mobility is high, but the driving force is low. Thus, we expect higher nucleation at

intermediate concentrations, as demonstrated in these wetting experiments.

6.5.3 Anisotropy of needle growth

In experiments, Alq3 tends to solidify into single-crystal, high-aspect-ratio needles, as shown

in Fig. 6-14. Note that Alq3-needle formation is not specific to these experiments. Alq3-

needle formation is exhibited in single-crystals grown from physical-vapor deposition [96] and

liquid solutions of Alq3 and solvent [12]. Thus, it is likely that Alq3 has a kinetic anisotropy
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solvent

glass + Alq3

meniscus

Figure 6-17: Micrograph from wetting experiment. Glass substrate is held vertically above liquid solvent. Solvent
wets the substrate creating a concentration gradient with more solvent near the bottom edge and less solvent
up the substrate.

(e.g., an anisotropic surface energy) that leads needle growth [41] (for an extended discussion,

see Balluffi, Allen, and Carter [3, §14.2]).

6.5.4 Splintering needles for thick Alq3-films

Needle widths varied little between h̃Alq = 15 nm and h̃Alq = 30 nm, as shown in Fig. 6-4.16

This result is similar to experiments by Datar et al. [19], who observed that thicker films of

PE-PTCDI17 produced longer—but not thicker/wider—needles.

When h̃Alq = 60 nm, however, there was a noticeable change in the crystal morphology,

as shown in Fig. 6-18(b). These needles tended to have sharp (as opposed to flat) needle

tips. These needles were also more likely to branch, or “splinter”, than those for thinner

Alq3-films. This splintering produced curved needles, as each splinter was slightly misaligned

with the original needle.

16The width-variation between needles on the same substrate is noticeable, but on average, the width is
relatively constant with respect to h̃Alq—except for h̃Alq = 60 nm.

17propoxyethyl perylene tetracarboxylic diimide
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(a) Rectangular needles for Alq3-film thickness
h̃Alq = 30 nm.

50 !m

(b) Irregular, “splintered” needles for Alq3-film
thickness h̃Alq = 60 nm.

Figure 6-18: Crystal morphology for different Alq3-film thicknesses, h̃Alq. Most of the substrate in (a) is clear
in contrast to (b), which is covered with droplets (gray in images). This difference suggests that the needles in
(a) consume what little Alq3 is on the thinner

Granasy et al. [41] showed that high supercooling (lower solvent-to-Alq3 ratios) can dis-

tort the formation of needle-like crystals in crystallizing fluids. If solvent condensation

is not proportional to the Alq3-film thickness, thicker films could lead to lower solvent-

concentrations and thus, higher supercooling.

6.6 Open issues

6.6.1 Resolution of micrographs taken during solvent annealing

All micrographs taken during solvent annealing were captured using an optical microscope;

thus, the highest resolution possible is on the order of a micron because the resolution is

limited by diffraction [43, §10.2.6].

This limitation is particularly unfortunate when measuring liquid drops. Initially, the

substrate is covered by an Alq3-film with uniform thickness. When this film dewets, we expect

to see drops with a typical spacing given by Eq. (5.5) at a characteristic time Eq. (5.6). These

measurements would provide an experimental measure of the film thickness (after solvent

mixing) since λ̃∗ ∼ h̃2
0 and τ̃∗ ∼ h̃5

0 [82].

The drop size can also be useful for measuring the intermolecular pressure. The pressure

in the ultra-thin film must (approximately) equal the pressure in the drop. By relating drop
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heights to drop pressure using surface tension, one can extract the functional form of the

intermolecular pressure. Kim et al. [52] used this technique to measure the intermolecular

pressure in polymer films.

In the present study, imaging (during solvent-vapor annealing) is limited to optical mi-

croscopy because the substrate must be surrounded by a solvent-vapor atmosphere. This

constraint makes it difficult for microscopy techniques that require a physical probe (e.g.,

atomic force microscopy) or a low-pressure environment (e.g., scanning electron microscopy).

Although these techniques can (and were) used after annealing, the resulting micrographs

are not an accurate measurement of the film morphology during solvent-vapor annealing.

6.6.2 Faster-than-t1/2 needle growth in experiments

In experiments, some needles grew faster than t1/2 (see e.g., Fig. 6-3). This behavior may

be explained by a two-dimensional, needle-growth analysis.

For one-dimensional needle growth, solvent that is not incorporated into the growing

Alq3-needle is rejected in front of the needle. This build-up of solvent inevitably leads to a

slowing of needle growth.

In two-dimensions, a needle can grow towards regions with more Alq3, and leave behind

Alq3-depleted fluid (which, can go around the sides of the needle tip). In this manner,

the concentration profile in front of the needle tip can reach a steady-state. With the

concentration profile fixed in time, the concentration gradient at the needle tip will be time-

invariant, and the needle velocity will be constant. In other words, the needle tip will grow

linearly in time—significantly faster than 1D-diffusion-limit, Lneedle ∼ t1/2. A more complete

analysis of this behavior is presented in Balluffi et al. [3, §20.2.2].

This result suggests an explanation for variations in growth-exponents: skinnier (small

needle-width) needles could promote 2D transport, while wider needles could promote 1D

transport (our one-dimensional model is equivalent to the growth of a semi-infinite plane

in two dimensions). Unfortunately, optical resolutions (see §6.6.1) limited measurement of

needle widths, which were at most a few micron.
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6.6.3 The lubrication approximation

In this thesis, we make the assumption that H � L (see §2.2.1) and use lubrication theory

to derive the thin-film equations (Eq. (4.15)). Experiments show drops that are about a

micron in diameter (see e.g., Fig. 3-1), and the height of drops is on the order of a micron

since optical microscopes are diffraction limited.18 These measurements suggest slopes close

to unity, which does not match the long-wave approximation.

Nevertheless, there is evidence to suggest that lubrication theory is a good approximation

even when the small-slope assumption fails [17]. In particular, simulations of the Stokes

equations by Mazouchi and Homsy [61] revealed surprising agreement with lubrication theory

despite sharp steps in topography.

6.6.4 Concentration-dependent material properties

The dimensionless governing equations—Eq. (4.3), Eq. (4.7), and Eq. (4.11)—allow concentration-

dependent material properties in the form of concentration-dependent dimensionless parame-

ters S(φ), A(φ), D(φ), and ε(φ). Similarly, the numerical code developed for this thesis (and

the finite-difference equations presented in Appendix B) is written to allow concentration-

dependent material properties.19 Nevertheless, the simulation results presented in this thesis

are in terms of the rescaled governing equations, Eq. (4.15), which only allow for constant

α-values.

6.6.5 Meniscus at the needle tip

Experiments show that the fluid wets the needle (see e.g., Mascaro et al. [59, Fig. 3c]). In

this thesis, we assume that the fluid wets the needle tip such that the height of the liquid,

at the solid/liquid interface, matches that of the solid; i.e., htip = hsolid. Alternatively, the

fluid could creep onto the top of the needle such that height of the fluid at the needle tip is

18Measuring drop sizes after the experiment is not ideal since drop sizes could change significantly when
the solvent has evaporated.

19Hamaker constant ASLV, dimensional equilibrium-thickness ε̃, surface tension σ, and diffusivity D can be
non-constant (e.g., concentration-dependent or spatially-varying). Note, however, that the finite-difference
equations assume constant viscosity, µ, and density ρ.
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Figure 6-19: Comparison of menisci at the needle tip. (Left) A meniscus where the fluid wets the tip of needle,
such that the height of the fluid matches that of the needle. (Right) A meniscus where the fluid wets the entire
needle, such that the height of the fluid at the needle tip is larger than the needle.

greater than that of the needle; i.e., htip > hsolid. These two scenarios are depicted on the

left and right of Fig. 6-19.

Note, however, that the fluid on top of the needle should be very thin due to intermolec-

ular forces; i.e., it should be on the order of ε. If hsolid � ε, these two wetting scenarios are

indistinguishable. In either case, the shape of the meniscus is governed by the pressure in

the film, as discussed in §5.5.1.

6.6.6 Intermolecular pressure exponents

In this thesis, the intermolecular pressure is described by a 3-4 potential (see §4.3), as is

common in the literature on dewetting films [38, 35, 74]. Other popular potentials include

the 2-3 potential [90, 39] and the 3-9 potential [38, 39].

The 3-9 potential represents the Lennard-Jones potential (integrated three times) and

leads to a very thin equilibrium thickness, ε; so thin, in fact, that it produces an adsorbed

film, in which transport is governed by diffusion rather than hydrodynamics [73, §VI]. Ex-

perimental images from Mascaro et al. [59] suggest films that are tens of nanometers thick;

sufficiently thick for continuum methods.

In the 2-3 potential, the h−2-term represents the effects of a “diffuse electric double-

layer”, which captures ionic-electrostatic and charge-dipole interactions [91]. In experiments,

we have a polar solvent, methanol (Alq3 is non-polar); thus, the 2-3 potential may be a

better representation. This change in potential alters the wavelength and time-scale of

the dewetting instability described in §5.1.1. Nevertheless, all other results in this thesis are

unaffected by a change of exponents; the dynamics of the system are governed by coarsening,

which is not dependent on the exact form of the intermolecular pressure (see §5.1.2).
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6.6.7 Retarded van der Waals interactions

We use an intermolecular pressure (Eq. (4.9)) with an attractive van der Waals term that

scales as h−3. This relation, however, assumes that van der Waals interactions between any

pair of molecules are not screened by the presence of other molecules; i.e., van der Waals

interactions are non-retarded. For films thicker than about 10 nm, retardation makes the

strength of interactions significantly weaker, such that van der Waals interactions come into

the pressure as h−4 [82].
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Chapter 7

Conclusions and Outlook

In order to integrate single-crystal organic semiconductors into practical (opto)electronic

devices, we need to understand the physics of crystal growth from thin films. In this thesis,

we investigated the growth of single-crystal needles of Alq3 from amorphous Alq3-films that

were annealed in methanol vapor. To understand the growth process, we developed a physical

model describing solidification from thin-film liquid mixtures. Finally, we derived scaling laws

that provide physical insight into the growth behavior in numerical simulations.

Growing Alq3 needles were imaged during solvent-vapor annealing. Upon solvent-vapor

annealing, the initially-uniform Alq3-film formed drops and nucleated crystal needles. Nee-

dle growth exhibited a power-law behavior, with the needle length scaling as Lneedle ∼ tγ. To

understand this behavior, we developed a mathematical model to describe these morpholog-

ical changes—both drop formation and needle growth—during solvent-vapor annealing. The

governing equations were solved numerically, and the resulting 1D simulations qualitatively

matched experimental observations.

The governing equations were rescaled to produce a dimensionless transport coefficient,

α, which relates diffusion to coarsening. For high α-values (diffusion-dominated regime),

the needle length scaled as Lneedle ∼ t1/2; this growth matches the theory of 1D, diffusion-

dominated solidification. For low α-values (coarsening-dominated regime), we identified

two sub-regimes: 1) small needles (i.e., hsolid . 〈hdrop〉) with needle lengths scaling as

Lneedle ∼ t2/5, and 2) large needles (i.e., hsolid � 〈hdrop〉), with Lneedle ∼ t0.29. Needle

growth in these low α-regimes were dominated by fluid flux driven by droplet collapse, i.e.,
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coarsening. In order to test the validity of this analysis, we varied the thickness of the Alq3

film, h̃Alq, since α ∼ h̃−2
0 ∼ h̃−2

Alq. The measured growth-exponents fell into the predicted

range, and increased with increasing α, as predicted.

The remaining parameters in the system—equilibrium thickness, ε, and initial solvent-

concentration, φ0—did not influence the growth-exponent, γ, but altered the behavior nonethe-

less. Increasing ε decreased the dewetting time, τ̂∗, as predicted from linear-stability analysis.

Increasing the solvent-concentration, φ0, reduced the concentration gradient at the needle

tip and thus, slowed needle growth by reducing the coefficient A, in Lneedle ≈ Atγ.

Simulations reproduced predicted dewetting and coarsening behavior. Dewetting initiates

at the predicted time scale and wavelength. For small needles, the fluid film coarsens such

that the number of drops scale as N ∼ t−2/5, as predicted by Glasner and Witelski [38].

For large needles, low pressure at the needle tip promotes drop collapse and forms a wetting

layer, which grows as t0.34 < Lwet < t0.44.

This thesis describes the fundamental physical processes that govern the growth of Alq3

needles. Although experiments were conducted on a single system—Alq3-methanol-glass—

the results should be applicable to many molecule-solvent-substrate systems. In other words,

the behavior of the system is governed by a set of dimensionless parameters, which could be

tuned using different molecules, solvents, and substrates.

Future Work

This thesis suggests a number of future directions.

Controlling nucleation Preliminary experiments suggest that there is an optimal solvent-

concentration for nucleation. Thus, one could control nucleation by controlling annealing

pressure and temperature to adjust vapor-concentration; similarly, cooling the substrate

promotes condensation of solvent vapor.

Material properties for Alq3/methanol mixture This thesis does not make a direct

comparison between experiments and simulations because many material properties are un-

known. In particular the equilibrium film-thickness, surface-tension, viscosity, diffusivity,
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and Hamaker constant for the Alq3/methanol mixture are unknown. Knowing these prop-

erties could guide solvent selection.

Simulations with concentration-dependent material properties Preliminary simu-

lations with concentration-dependent, dimensionless Hamaker constants (i.e., A(φ)) demon-

strate wetting-layer formation at the needle tip. This result suggests a systematic study of

simulations with A(φ), S(φ), D(φ), and ε(φ).

Two-dimensional simulations As discussed in §6.6.2, one-dimensional transport limits

growth rates to t1/2 (or slower). Modifying the simulations for a two-dimensional domain

would allow the growing needle tip to consume Alq3 from a larger area and reject solvent

behind the growing tip. 2D simulations would more accurately model experimental obser-

vations.

Alq3-solvent solubility The needles grown in this thesis did not coarsen as the P30T1

needles in Xiao et al. [102] or dissolve like the Alq3-chloroform needles in Mascaro [58]. This

suggests that methanol is less soluble in Alq3 than chloroform. Simulations in this thesis

did not exhibit needle shrinkage, which requires interacting needles (for coarsening) or the

addition of solvent during growth.2

1poly(3-octylthiophene)
2Simulations conserved the initial mass of Alq3 and solvent. With solvent-condensation after t = 0, the

solvent-concentration could exceed the concentration at the needle tip and lead to shrinkage.
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Appendix A

Phase transitions and equilibria

The physics discussion presented in Chapter 2 is organized relative to the steps in the ex-

periment. There is, however, further insight to be gained by presenting a unified discussion

of the various phase transitions and equilibria that occur during the experiment.

A.1 Nucleation of drops, holes, and solids

When phase-change is energetically favorable, nucleation of the lower-energy phase will lower

the bulk energy, but it also creates an interfacial boundary between the two phases. This

interface adds an energetic penalty. As a result, there tends to be a critical nucleus where

the energy reduction due to phase change balances the energy increase due to the creation of

the phase boundary (as discussed in §2.3.1). In the present study, nucleation phenomena can

be found during condensation (e.g., the water drops on the side of a cold glass), dewetting

(as discussed in §2.2.5), and solidification (as discussed in §2.3.1).

A.2 Coarsening in liquid drops and separated phases

In Chapter 2, we discussed coarsening of drops. Similar coarsening phenomena is observed

during phase-separation; for example, the growth of carbon-dioxide bubbles in beer, the

solidification of solid particles from its melt, and the phase separation of alloys. Here we

compare the coarsening of liquid drops (found in solvent-annealing experiments) to coarsen-
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ing in a phase-separated mixture.

A.2.1 Coarsening of a phase-separated mixture

Consider a spherical particle (with radius R) of one phase growing in a bulk phase. The

Stefan condition (recall §2.3.3) states that the growth of the particle (i.e., the radial velocity

of the surface, vr) is proportional to the concentration gradient normal to spherical particle:

vr ∼
∂φ

∂r

Integrating this velocity over the surface of the spherical particle gives the mass change of

this seed
∂m

∂t
∼ vrR

2 ∼ R2∂φ

∂r
(A.1)

The concentration gradient scales as

∂φ

∂r
∼ 〈φ〉 − φ(R)

R

where 〈φ〉 is the mean-field concentration, and φ(R) is the equilibrium concentration around

the growing particle.

For a flat interface, local equilibrium requires that the concentration on the bulk-side of

the interface is fixed at φflat. For curved interfaces, this equilibrium value is altered due to

the Gibbs-Thomson effect, such that φ(R) ≈ φflat(1 + 2γΩ/kTR). Thus, we can simplify the

concentration-gradient to
∂φ

∂r
∼ 1

R(〈R〉 −R)
∼ R−2 (A.2)

To find a rate equation for the seed radius, we relate the mass and the sphere radius by

geometry, m ∼ R3, and apply the chain rule, which gives

∂R

∂t
∼ ∂m

∂t

∂R

∂m
∼ ∂m

∂t
R−2 (A.3)
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By combining Eq. (A.1), Eq. (A.2), and Eq. (A.3), we find

∂R

∂t
∼ R−2 (A.4)

Separating variables and integrating gives

R ∼ t1/3 (A.5)

A.2.2 Comparison between coarsening of drops and particles

Although coarsening of liquid drops (§5.1.2) and coarsening of phase-separated particles

(§A.2.1) are physically similar, the resulting scaling laws are quite different. For a more

direct comparison, we rewrite the equations from §5.1.2 in terms of the drop size H. We can

relate the drop height to the drop-pressure, 1 drop-volume, and separation distance2 as

P ∼ H−1

m ∼ H2

〈L〉 ∼ 〈H〉2

The resulting scaling laws for both drop-coarsening and particle-coarsening are summa-

rized in Tbl. A.1. The main difference between scaling laws stems from their differences in

dimensionality: The mass of a drop is proportional to the square of its height; in contrast,

the mass of a particle is proportional to the cube of its radius. Another difference lies in

the driving force: for drop-coarsening, fluid flows between adjacent drops with separation

L (which scales as H2); for particle-coarsening, diffusion exchanges mass between a particle

and a mean-field. Note that the distance from a particle to the mean-field is approximately

R, while the distance to the characteristic distance to nearest particle is approximately R3.

1H ∼ PW 2, where the width of the drop scales like W ∼ P−1. See Glasner and Witelski [38, §II] for
details.

2Note that the drop mass should scale the same as the separation distance: given a series of equally-spaced
drops with equal mass, the collapse of every-other drop would double the drop separation and double the
size of the remaining drops (assuming the mass from the collapsed drops is equally distributed).
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drops particles

characteristic size H R

evolution equation
∂H

∂t
∼ ∂m

∂t

∂H

∂m

∂R

∂t
∼ ∂m

∂t

∂R

∂m

driving force
∂m

∂t
∼ P − 〈P 〉

〈L〉 ∼ 1

H3

∂m

∂t
∼ φ− 〈φ〉

R
∼ 1

R2

P ∼ H−1 φ ∼ R−1

mass relation m ∼ H2 m ∼ R3

size evolution H ∼ t1/5 R ∼ t1/3

Table A.1: Comparison of drop-coarsening and particle-coarsening
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Appendix B

Finite-difference formulations

For posterity, I present a detailed record of the finite-difference formulations used in this

thesis. There is no reason to read through this chapter unless you are interested in reimple-

menting this solver, or you want to check my error-prone math.

The majority of the analysis in this thesis uses the rescaled equations of motion (i.e.,

Eq. (4.15)), but the numerical simulations are implemented with the dimensionless equations

Eq. (4.3), Eq. (4.7), and Eq. (4.11). Using these un-rescaled equations, the numerical solver

can handle concentration-dependent surface-tension, Hamaker constant, and diffusivity.

B.1 Nomenclature

W P Ew e

(a) Stencil centered on node-P

L i R

(b) Stencil centered on interface-i

Figure B-1: Nodes (circles) and interfaces (dotted lines) on the computational mesh.

To simplify the notation for describing finite differences, we adopt the notation shown

in Fig. B-1. Node values are points on a mesh at j = 0 to N . Following the notation of

Patankar [77], we label the values at the jth node with subscript P (present node or point),

the j + 1 node with subscript E (east), and the j − 1 node with subscript W (west). In

addition, we denote the interfaces to the east and west of P with subscripts e (j + 1
2
) and w
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(j − 1
2
), respectively. For certain calculations (e.g., third derivatives), more node values are

needed, so we also introduce subscripts E2 (j + 2) and W2 (j − 2) to label second-nearest

neighbors. This set of node points (E2, E, P , W , W2) is referred to as a finite-difference

stencil.

At times, it is convenient to write equations in terms of the ith interface with a node

labeled R to its right, and L to its left. Combining this interface-centered notation with

the node-centered notation above, we find that (uR)e = uE, (uL)w = uW , and (uL)e =

(uR)w = uP . In other words, (uR)e translates to “u-value to the right of the eastern inter-

face”. Although, this notation may seem cumbersome, it significantly simplifies some of the

expressions below.

B.2 Newton’s Method of root-finding

y

xx0 x0 + ∆x

df
dx

f(x0)

f(x0 + ∆x)

desired root

Figure B-2: Arbitrary function, f(x) near root. To find the root, choose an initial point x0 and find the slope
df/ dx at that point. By extending a line with slope df/ dx to the x-axis, we march closer to the root.

Suppose we are given some continuous function f(x), which we can differentiate to give

df/dx. Our goal is to find the point(s), xr, where f(xr) = 0; in other words, we want the

root(s) of f(x). We first choose an arbitrary point along the curve, x0. Assuming f(x) has

a root and f(x0) 6= 0 (otherwise, we need to look no further), there is some ∆x for which

0 = f(xr) ≈ f(x0 + ∆x). (B.1)

We can approximate Eq. (B.1) using the first two terms of the Taylor series expansion:

f(x0) +
df

dx

∣∣∣∣
x0

∆x ≈ 0
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Solving for ∆x, we have

∆x =
−f(x0)

df/ dx|x0

. (B.2)

We can see from Fig. B-2, that f(x0 + ∆x) 6= 0, but this new point is closer to zero1. We

then iterate, to find the desired zero.

The algorithm is summarized below.

1. Given f(x), find df/ dx.

2. Choose a starting point x0.

3. Calculate ∆x =
−f(x0)

df/ dx|x0

.

4. Calculate f(x0 + ∆x).

• If this is close enough to zero, DONE.

• Otherwise, let xnew
0 = x0 + ∆x and start over from step 3.

Of course, the definition of “close enough” to zero depends on the problem and the desired

accuracy.

B.3 Jacobian

The description of root finding in §B.2 applies to a function of one variable. For multiple

variables (e.g., hj and φj: the height and concentration of the thin film at mesh point, j),

the derivative, df/ dx|x0 , is replaced by the Jacobian, J —the matrix of first-order partial

derivatives. (Note that J denotes the Jacobian, while J denotes solvent flux.) Note also,

that we consider a pair of coupled equations, such that f becomes a vector

fT =
[
· · · (fh)j (fφ)j · · ·

]
Thus, Eq. (B.2) becomes

∆u = −J −1f(u0) (B.3)

1It will not always be the case that f(x0 + ∆x) is closer to zero than f(x0) – this has to do with the
stability of this root-finding method (see Hamming [42]).
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where the Jacobian and vector of unknowns have the form

J =



. . .

∂fh
∂hW2

0
∂fh
∂hW

∂fh
∂φW

∂fh
∂hP

∂fh
∂φP

∂fh
∂hE

∂fh
∂φE

∂fh
∂hE2

0

∂fφ
∂hW2

0
∂fφ
∂hW

∂fφ
∂φW

∂fφ
∂hP

∂fφ
∂φP

∂fφ
∂hE

∂fφ
∂φE

∂fφ
∂hE2

0

. . .


(B.4)

uT =
[
· · · hj−1 φj−1 hj φj hj+1 φj+1 · · ·

]
(B.5)

∆uT =
[
· · · ∆hj−1 ∆φj−1 ∆hj ∆φj ∆hj+1 ∆φj+1 · · ·

]
(B.6)

The remainder of this appendix is dedicated to solving for the derivatives that make up

the Jacobian.

B.4 Discretization of thin-film equations in 1D

The nonlinearity of Eq. (4.3) and Eq. (4.7) suggests that a numerical solution would be

appropriate. To that end, we discretize these equations using centered finite-differences in

space and backward-Euler steps in time.

B.4.1 Discretization of film thickness equation

We can solve the thin-film equation as a flux-conservative, initial-value problem [78, §19.1]

by rewriting Eq. (4.1) as

fh =
hP − hold

P

∆t
+

1

∆x
(Qe −Qw) = 0 (B.7)

Note that Qw for node P is equivalvent to Qe for node P − 1. Thus, instead of writing

out separate expressions for Qe and Qw, we write a single Qi, which is the flux at the ith

interface.

Qi = −p′ihi3, p′i =
pR − pL

∆x
(B.8)
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The pressure to the right of the ith interface is

pR = −SRh′′R −ARψR (B.9)

where ψR = (ε/hR)n − (ε/hR)m, such that Aψ is the intermolecular pressure Eq. (4.9). For

pL, simply replace all subscripts R with the subscript L.

Combining the last few expressions together gives

Qi =
hi

3

∆x
(SRh′′R +ARψR − SLh′′L −ALψL) (B.10)

The value of the thin-film thickness at an interface, and its second finite-difference can

be calculated as

hi =
hR + hL

2
, (B.11a)

h′′R =
hR2 − 2hR + hL

∆x2 , and h′′L =
hR − 2hL + hL2

∆x2 (B.11b)

Note that the interface values, hi, should never be used to compute second (or higher order)

derivatives, as discussed in §B.4.2.

The Jacobian for the thin-film equation (Eq. (B.7)) is found by taking derivatives with

respect to all h-values (i.e., hP , hE, hW , hE2, hW2) and φ-values (i.e.,, φP , φE, φW ). A list

of these terms, plus a table of the front factors multiplying these terms is given in Tbl. B.1

and Tbl. B.2. The tables simplify the terms by defining

∂ψ ≡ ∂ψ

∂h
= −nh−(n+1) +mh−(m+1) (B.12)

p′i ≡ SRh′′R +ARψR − SLh′′L −ALψL (B.13)

Note that p′i is not-quite a finite first-derivative since it is missing a 1/∆x.
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∂fh
∂hW2

∂fh
∂hW

∂fh
∂hP

∂fh
∂hE

∂fh
∂hE2

1
∆t

1

3
2∆x2he

2p′e 1 1

3
2∆x2hw

2p′w -1 -1
1

∆x4h3
e(SR)e 1 -2 1

− 1
∆x4h3

e(SL)e 1 -2 1
1

∆x4h3
w(SR)w -1 2 -1

− 1
∆x4h3

w(SL)w -1 2 -1
1

∆x2h3
e(AR∂ψR)e 1

− 1
∆x2h3

e(AL∂ψL)e 1
1

∆x2h3
w(AR∂ψR)w -1

− 1
∆x2h3

w(AL∂ψL)w -1

Table B.1: Table of coefficients for principal terms in Jacobian. Note that a variable at a node to the left of
an eastern interface is equivalent to that variable at a node to the right of a western interface. For constant
coefficients, the second derivative terms can be combined into a single third derivative.

∂fh
∂φW

∂fh
∂φP

∂fh
∂φE

1
∆x4h3

e

(
∂S
∂φ
|Rh′′R

)
e

1

− 1
∆x4h3

e

(
∂S
∂φ
|Lh′′L

)
e

1

1
∆x4h3

w

(
∂S
∂φ
|Rh′′R

)
w

-1

− 1
∆x4h3

w

(
∂S
∂φ
|Lh′′L

)
w

-1

1
∆x2h3

e

(
∂A
∂φ
|RψR

)
e

1

− 1
∆x2h3

e

(
∂A
∂φ
|LψL

)
e

1

1
∆x2h3

w

(
∂A
∂φ
|RψR

)
w

-1

− 1
∆x2h3

w

(
∂A
∂φ
|LψL

)
w

-1

Table B.2: Coefficients for Jacobian terms of solvent-mass equation (φ-derivatives)

B.4.2 Interface values—a word of warning

The unknowns of interest are solved on points known as nodes or cell-centers. For certain

equations, we require the values at the cell-centers and at the interfaces between these cells;
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in this instance, we use an arithmetic mean. 2 For example

he = h
P+

1
2

=
hP + hE

2

Note that interface values should not be used to construct a finite-second-difference; doing

so would artificially increase the magnitude of the derivative. For example:

∂2h

∂x2 ≈
he − 2hP + hw

(∆x/2)2
=

2hP + 2hE − 8hP + 2hP + 2hW

∆x2 = 2
hE − 2hP + hW

∆x2

which gives twice the “normal” centered finite-second-difference. 3 On the other hand, these

interface values give the same finite-first-difference as a centered finite-first-difference.

B.5 Discretization of convection-diffusion equation

The finite-difference form of the solvent-mass equation (Eq. (4.4)) can be written as

fφ =
(φh)P − (φh)old

P

∆t
+

1

∆x
(Je − Jw) = 0 (B.14)

Again, we take advantage of the fact that the solvent flux (Eq. (4.5)) Jw for node P is

equivalvent to Je for node P − 1 and write a single Ji, which is the flux at ith interface:

Ji = −Dihi
(
∂φ

∂x

)
i

+ φiQi (B.15)

where the expression for Qi was given in Eq. (B.10).

All that remains is to take derivatives of Eq. (B.14) with respect to all the variables in

the stencil (i.e., hj and φj), as shown in Tbl. B.3 and Tbl. B.4. These derivatives make up

the entries in the Jacobian.

2When using material properties at the interfaces, we should be using the harmonic mean [77, §4.2-3]
given by De = 2DP DE

DP +DE
3This increase in magnitude can be reasoned as follows: the arithmetic mean assumes a linear variation

between P and E (and between P and W ). Thus, the curvature between W and E would be artificially
constrained between w and e.
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∂fφ
∂hW2

∂fφ
∂hW

∂fφ
∂hP

∂fφ
∂hE

∂fφ
∂hE2

1
∆t
φP 1

1
2∆x
Deφ′e -1 -1

1
2∆x
Dwφ′w 1 1

3
2∆x2he

2φep
′
e 1 1

3
2∆x2hw

2φwp
′
w -1 -1

1
∆x4h3

eφe(SR)e 1 -2 1

− 1
∆x4h3

eφe(SL)e 1 -2 1
1

∆x4h3
wφw(SR)w -1 2 -1

− 1
∆x4h3

wφw(SL)w -1 2 -1
1

∆x2h3
eφe(AR∂ψR)e 1

− 1
∆x2h3

eφe(AL∂ψL)e 1
1

∆x2h3
wφw(AR∂ψR)w -1

− 1
∆x2h3

wφw(AL∂ψL)w -1

Table B.3: Table of coefficients for principal terms in Jacobian for the solvent-transport equation. All terms
are the same those in Tbl. B.1 with the addition of a factor of φ.

B.6 No-flux boundary condition at right edge

During the solution of the governing equations, we enforce no-flux boundary conditions at the

right edge of the fluid domain. This no-flux boundary condition is equivalent to a symmetry

boundary condition with zero first- and third-derivatives of the film thickness, h (see [38]),

and zero first-derivative of the solvent concentration, φ. This symmetry condition is shown

schematically in Fig. B-3.

no flux boundary

xB+1xB−1 xB

∆x

h(x)

Figure B-3: Schematic of no-flux boundary condition at right boundary.
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∂fφ
∂φW

∂fφ
∂φP

∂fφ
∂φE

1
∆t
hP 1

1
∆x2Dehe -1 1
1

∆x2Dwhw 1 -1

− 1
2∆x

heφ
′
e

(
∂D
∂φ
|R
)
e

1

− 1
2∆x

heφ
′
e

(
∂D
∂φ
|L
)
e

1

− 1
2∆x

hwφ
′
w

(
∂D
∂φ
|R
)
w

-1

− 1
2∆x

hwφ
′
w

(
∂D
∂φ
|L
)
w

-1
1

2∆x
Qe 1 1

1
2∆x

Qw -1 -1

1
∆x4h3

e

(
φ∂S
∂φ
|Rh′′R

)
e

1

− 1
∆x4h3

e

(
φ∂S
∂φ
|Lh′′L

)
e

1

1
∆x4h3

w

(
φ∂S
∂φ
|Rh′′R

)
w

-1

− 1
∆x4h3

w

(
φ∂S
∂φ
|Lh′′L

)
w

-1

1
∆x2h3

e

(
φ∂A
∂φ
|RψR

)
e

1

− 1
∆x2h3

e

(
φ∂A
∂φ
|LψL

)
e

1

1
∆x2h3

w

(
φ∂A
∂φ
|RψR

)
w

-1

− 1
∆x2h3

w

(
φ∂A
∂φ
|LψL

)
w

-1

Table B.4: Table of coefficients for principal terms in Jacobian for the solvent-transport equation.

B.6.1 Thin-film equation

For no-flux boundaries, the Jacobian terms are altered, as shown in Tbl. B.5. The boundary

conditions alter the Jacobian at the boundary points (as given in the table).

Since the third derivative uses a wide stencil, the points just-inside the boundaries are

also affected by the boundary. Just-inside the right boundary (i.e., when the boundary node

B in Fig. B-3 is at the E-node), the normal finite-difference for the third derivative

− S
∆x4h

3
e(−hW2 + 3hW − 3hE + hE2)
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is rewritten

− S
∆x4h

3
e(−hW2 + 3hW − 3hE + hP)

reflecting the fact that the E2-node lies outside the boundary, but must match node P to

satisfy no-flux.

∂fh
∂hW2

∂fh
∂hW

∂fh
∂hP

1
∆t

1

3
2∆x2hw

2p′w -2 -2
1

∆x4h3
w(SR)w -2 2

− 1
∆x4h3

w(SL)w -2 4 -2
1

∆x2h3
w(AR∂ψR)w -2

− 1
∆x2h3

w(AL∂ψL)w -2

Table B.5: Table of coefficients for principal terms in Jacobian at right boundary for no-flux boundary conditions.

B.6.2 Solvent-mass equation

Assuming no-flux boundary conditions, Eq. (4.4) becomes

fφ
∣∣
L

=
(φh)P − (φh)old

P

∆t
+

2

∆x
Je = 0 (B.16a)

fφ
∣∣
R

=
(φh)P − (φh)old

P

∆t
− 2

∆x
Jw = 0 (B.16b)

at the left and right boundaries (subscripts L and R, respectively). The corresponding

derivatives at the boundaries are given in table Tbl. B.6

B.7 Boundary conditions at the growing needle tip

The boundary conditions at the needle tip are applied in two distinct steps. 1) The needle

tip is fixed in position during the implicit solution of the unknowns, h and φ;4 during this

4If the needle tip were not fixed, the geometry changes of mesh would add a few extra terms to the
Jacobian. More annoyingly, you’d have an extra equation for the velocity which would have to be moved
around in the Jacobian in order to maintain the banded structure of the Jacobian.
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∂fφ
∂hW2

∂fφ
∂hW

∂fφ
∂hP

1
∆t
φP 1

3
2∆x

φwp
′
wh

2
w 2 2

− 1
∆x4Sφwh3

w -2 8 -6

− 1
∆x2Aφwh3

w∂ψw -2 2

− 1
2∆x
Aφwh3

wh
′
w∂

2ψw 2 2

Table B.6: Table of coefficients for principal terms in Jacobian on right boundary for no-flux boundary conditions.

time, the needle tip acts as a no-flux boundary. This first step is discussed in §B.7.2. 2)

After solving for h and φ, we grow the needle by treating it as a fixed-value or “absorbing”

boundary. This second step is discussed in §B.7.3.

B.7.1 Discretization at the needle tip

As shown in Fig. B-4, we let the subscript b0 denote the mesh node nearest the solid/liquid

boundary of the needle tip; also, let b1 denote the next node over; i.e., b0 + 1. Similarly, let

the subscript i0 denote the cell-interface at the needle tip, and let i1, i2 be shorthand for

i0 + 1, i0 + 2.

vtip

tip

∆xb0 ∆xb1

b0 b1
i1i0 i2

Figure B-4: Discretization of the region near the tip of a growing, 1D crystal.

Finally, we use the subscript “tip” to denote node values at the needle tip. Since, the

needle tip acts as both a cell-interface and a mesh node, values at the tip are sometimes

denoted by the subscript i0 and, at other times, by “tip”. Alternatively, imagine a cell

centered on the tip-node as shown in Fig. B-5. We can use linear interpolation between
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values utip and ub0 to arrive at a value for ui0 (red dot in Fig. B-5). As ∆xtip → 0, ui0 → utip.

∆xtip

tip

i0 i1
b0

∆xb0

δxi0

Figure B-5: Close up diagram of the tip-cell at the needle tip showing how values at tip are interpolated onto
i0. In practice, this cell has zero width, such that ∆xtip → 0.

As shown in the diagram above, the b0-node is precisely centered on its cell. Thus, as

the needle grows, the cell width, ∆xb0 = xi1 − xi0 , shrinks. Similarly, the node-to-node

distances near the needle tip, δxi0 = xb0 − xi0 and δxii = xb1 − xb0 , shrink. All mesh nodes

and cell-interfaces to the east of b0 are unaffected by the needle, such that ∆xb1 = ∆x.

As the tip-cell deforms due to the moving needle, the position of the tip-node (i.e., xb0)

is moved so that it is always at the center of the tip-cell. This convention produces more

accurate node values as discussed in [77]. Furthermore, it implies that δxi0 = ∆xb0/2.

B.7.2 Solving the governing equations at the needle tip

During the implicit solutions of h and φ, no flux is allowed into the needle. Thus, the

governing equations at b0 are missing a flux from the left, such that

hb0 − hold
b0

∆t
+

Qi1

∆xb0
= 0 (B.17a)

(φh)b0 − (φh)old
b0

∆t
+

Ji1
∆xb0

= 0 (B.17b)

Also note that the cell width at the needle tip is altered by the needle tip, as denoted by

∆xb0 .

120



Modified derivatives near the boundary

The geometry changes introduced by the growing needle alter the derivatives in the above

equations. For example, the first derivatives for h at the cell-interfaces i0 and i1 depend on

δxi0 and δxi1 instead of ∆x as shown below.

h′i0 =
hb0 − htip

δxi0
, h′i1 =

hb1 − hb0
δxi1

Furthermore, the curvature at the b0-node becomes

h′′b0 =
1

∆xb0

(
hb1 − hb0
δxi1

− hb0 − htip

δxi0

)

This second difference is simply the difference of the first-differences divided by the distance

between the interfaces, xi1 − xi0 = ∆xb0 . Finally, a slight modification is made to the

curvature at the b1-node:

h′′b1 =
1

∆x

(
hb2 − hb1

∆x
− hb1 − hb0

δxi1

)

Implicit equations at the needle tip

The modified governing equations given by Eq. (B.17) are not so different from the equations

on the rest of the domain. However, most of the geometry changes introduced by the needle

tip are hidden in the fluxes. At the i1-interface, the volumetric and solvent fluxes are

Qi1 = −h3
i1

1

δxi1
(pb1 − pb0)

Ji1 = −Di1hi1
φb1 − φb0
δxi1

+ φi1Qi1

Furthermore, the modified curvatures appear in the pressure equations:

pb0 = −S 1

∆xb0

(
hb1 − hb0
δxi1

− hb0 − htip

δxi0

)
+Aψ(hb0)

pb1 = −S 1

∆x

(
hb2 − hb1

∆x
− hb1 − hb0

δxi1

)
+Aψ(hb1)
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Finally, values at the interface must be interpolated between their nodal values (as was done

in Fig. B-5) as follows5

hi1 =

(
1− ∆x

2δxi1

)
hb1 +

∆x

2δxi1
hb0

φi1 =

(
1− ∆x

2δxi1

)
φb1 +

∆x

2δxi1
φb0

Di1 =

(
1− ∆x

2δxi1

)
Db1 +

∆x

2δxi1
Db0

At the next node over (i.e., b1), the governing equations are relatively unchanged, except

that the above fluxes should replace the usual fluxes at the western cell-interface:

hP − hold
P

∆t
+

1

∆xb1
(Qe −Qi1) = 0

(φh)P − (φh)old
P

∆t
+

1

∆xb1
(Je − Ji1) = 0

B.7.3 Solving for the velocity at the needle tip

After solving the governing equations, we can grow the needle. This growth further modifies

the values of h and φ at b0 to balance the geometry changes and the Alq3 absorbed by the

needle.

Fixed-value (absorbing) boundary conditions at the needle tip

At the tip of the needle, we assume that the fluid wets the needle, such that htip = hsolid,

as shown in Fig. B-4 and discussed in §6.6.5. In addition, we require fixed-values of concen-

tration, φsolid and φtip, at the solid and liquid sides of the needle tip, as discussed in §2.3.2.

Thus, the two unknowns of the system, φ and h, are known at the liquid/crystal interface.

As shown in Fig. 4-2, the dimensionless values of φsolid and φtip are 0 and 1, respectively; in

the following we use φsolid and φtip to avoid confusion.

5By definition, nodes b0 and b1 are separated by a length δxi1 . Since i1 and b1 are fixed in space, these
points are always separated by a length ∆x/2. Linear interpolation with these distances gives the equations
shown above.
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i0 i1
b1b0

∆xb0

i0 i1
b1b0i0

∆xb0

δxi0 δxi1
vtip∆t

tip

Figure B-6: As the needle grows, the adjacent cell must shrink to make room for the needle. This change of
cell volume must be reflected in the discretization. Over the time period ∆t, mass was added to the needle,
with volume (per unit depth) vtiphtip∆t.

In contrast to the solution of the governing equations (see §B.7.2), this fixed-value bound-

ary condition implies a non-zero flux at the needle tip.

Implicit solution of needle velocity

The needle velocity given by Eq. (4.13) can be written in finite-difference form as

vtip = Di0

φb0 − φtip

δxi0
(B.18)

The growing needle changes the mesh geometry, as shown in Fig. B-6, such that

δxi0 = δxold
i0
− vtip∆t

2
(B.19a)

∆xb0 = ∆xold
b0
− vtip∆t (B.19b)

As Alq3-rich fluid is absorbed into the needle both the height and concentration are altered,

such that

hb0∆xb0 = (hb0∆xb0)
old − hsolidvtip∆t (B.20a)

φb0hb0∆xb0 = (φb0hb0∆xb0)
old − φsolidhsolidvtip∆t (B.20b)

We then solve Eq. (B.18), Eq. (B.19), and Eq. (B.20) simultaneously, i.e., implicitly.
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Pseudo-implicit velocity

The unknown values in this problem are given by the vector

x = [vtip,∆xb0 , hb0 , φb0 ]

These unknowns are associated with Eq. (B.18), Eq. (B.19) and Eq. (B.20); rewriting as a

vector of equations, f , with elements:

f1 : vtip∆xb0/2−Di0(φb0 − φtip)

f2 : ∆xb0 −∆xold
b0

+ vtip∆t

f3 : hb0∆xb0 −m+ hsolidvtip∆t

f4 : φb0hb0∆xb0 −mφ + φsolidhsolidvtip∆t

(B.21)

When the correct values of x are substituted into the above, then f(x) = 0. We “guess” an

initial value x0 and solve linear equation

f(x0) + J ∆x ≈ 0

with Jacobian

J =


∆xb0/2 vtip/2 0 −Di0

∆t 1 0 0

hsolid∆t hb0 ∆xb0 0

φsolidhsolid∆t φb0hb0 φb0∆xb0 hb0∆xb0

 (B.22)

where the rows match the equations in f and the columns match the derivatives with respect

to the variables in x. This linear system is solved using Newton’s method, as discussed in

§B.2.

B.7.4 Eating nodes

Since we have a moving needle tip, some mesh nodes must be transferred from the fluid

domain to the solid domain. When the needle tip crosses a mesh node, we must take care
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Figure B-7: Cells in the fluid domain before and after the needle eats a node. The heights of the yellow boxes
represent the values of the unknown (either h or φ), and the orange box represents the needle.

to conserve mass. Figure B-7 shows the steps involved in destroying a node.

1. When needle growth causes ∆xb0 to shrink below some threshold (currently using

∆x/4), it is time to “destroy” a node.

2. Combine the mass in the b0-cell with that in the b1-cell to make one super-node, which

extends from i0 to i2.

3. Mark the old b0-node as a solid node (instead of a fluid node) and make the old b1-

node the new b0-node (making sure to center the node on the cell). Similarly, i1 now

designates the cell-interface previously labeled i2.

As the control volumes are combined, conservation of mass requires

(ub0∆xb0)new = (ub0∆xb0 + ub1∆xb1)old

where (∆xb0)new = (ub0 + ub1)old. After this eating procedure, the solution proceeds as

normal.
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Appendix C

Miscellaneous

C.1 Filtering needle growth data

50 !m

Figure C-1: Left: micrograph of needles with each needle labeled as either unobstructed (blue) or obstructed
(red). Right: histogram of growth exponents from needles on left colors matching the overlay on the left.

Figure C-1 shows a micrograph of needles grown from a 15 nm Alq3 film after annealing

for 3 hours. Some needles are labeled as obstructed (red), which suggests that it interacts

with other needles during growth. A needle was labeled as obstructed if the clear wetting

layer of the needle collided with the wetting layer of an adjacent needle. Unobstructed needles

are labeled in blue. The histogram on the right of Fig. C-1 shows the growth exponents for

obstructed and unobstructed needles.
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C.2 Measuring the growth-exponent in simulations

The growth-exponents described in §6.2 apply to intermediate times. Early- and late-time

phenomena can alter γ, such that the analyses of §5.2, §5.3, §5.4, and §5.5 do not apply.

As discussed in §6.2.7, there is a dewetting time before which growth-exponents, γ, vary

continuously (i.e., needle growth does not behave like a power-law). Other early- and late-

time phenomena are discussed below.

C.2.1 Growth-exponent transition at late times
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Figure C-2: Transition of growth-exponent, γ, at late times for α = 0.1, htip = 16., φ0 = 0.5, and ε = 0.5. The
growth exponent, γ, is the slope in the needle length vs. time plot.

Low transport coefficients, α, suggest that coarsening dominates diffusion. Note, however,

that droplet collapse slows down faster than diffusion. Thus, regardless of α-value, diffusion

will dominate at sufficiently-late times. Figure C-2 demonstrates this transition in the growth

exponent: at early time, γ ≈ 2/5; at late time, γ → 1/2. The oscillations in γ are a result

of drop collapses as discussed in §C.2.3.

C.2.2 Numerical transient in needle growth

At very early times, the simulations display a transient growth that is linear in time. This

transient is a numerical artifact and lasts until the diffusion front grows beyond the first few

mesh points. In other words, this transient has a characteristic time of τ̂linear ∼ ∆x̂2/4α.

Figure C-3 shows the transition from the numerical transient at early time to the steady
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Figure C-3: Numerical transient in needle growth. At times less than τ̂linear (marked with a red dot), the needle
grows linearly in time.

state growth at late time; as predicted, the time τ̂linear (marked with a red dot) separates

these two regimes.

C.2.3 Perturbations in the growth-exponent due to drop collapse

At early times, the collapse of a drop has only a minor affect on needle growth because

drops are significantly smaller than the needle. As time progresses, however, droplets grow

to the size of the needle, and drop collapses near the needle noticeably perturb the growth

exponent.

As shown in Fig. C-4, a drop collapse near the needle tip produces a jump in the growth-

exponent: As the drop nearest the needle collapses, it pushes Alq3-rich fluid toward the

needle, thus increasing the growth-exponent. Not all of that fluid can be incorporated

into the needle (or the meniscus); as this extra fluid is advected away, it stretches the

concentration gradient and reduces the growth-exponent (below the steady state behavior).

For sufficiently large perturbations, it is not possible to reliably measure the growth

exponent. This issue is exacerbated by low α-values: in this regime, diffusion is slow correct

the concentration profile, which was distorted by the drop collapse. In other words, low a

α-value prolongs the jump in the growth-exponent, shown in Fig. C-4. This disturbance
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Figure C-4: Perturbation of the growth-exponent due to drop collapse. The red lines in the growth-exponent
plots mark the time of the thin film plots above. A drop collapse near the needle tip produces a spike in the
growth-exponent.

makes it difficult to extract reliable growth rates for short needles at very-low α-values.

C.3 Marangoni effects

C.3.1 Flows driven by Marangoni effects

h

∇σ Uτ

Figure C-5: Shear flow driven by the Marangoni effect

Surface-tension gradients are commonly found when a fluid film varies in composition

[44] or temperature [89]. These gradients produce a shear stress along the free surface of

the film, τ = t̂ · ∇σ, where t̂ is the unit vector tangent to the free surface.1 The resulting

shear-induced flow is known as the Marangoni effect. In the absence of pressure gradients,

the surface shear, τ , produces a Couette-like flow, as shown in Fig. C-5. The velocity at the

1In the rest of this thesis, τ (with a subscript) is used to denote characteristic times (of various sorts).
Here, we use τ to denote shear stress. Please pardon the inconsistency.
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free surface can be related to the surface stress as

Uτ ≡
τh

µ
. (C.1)

C.3.2 Marangoni effects vs. capillary effects

Integrating the velocity given by Eq. (C.1) gives a fluid flux that scales as Qτ ∼ τε2/µ.

To estimate the importance of Marangoni effects, we compare this flux to that arising from

pressure gradients, which scales as Qp ∼ (∂p/∂x)ε3/µ (see Eq. (2.4)). Taking the ratio of

these two fluxes, we find

M =
τ

ε(∂p/∂x)
,

where Marangoni effects dominate for large values ofM and pressure-driven flow dominates

for small values.

The Marangoni stress should scale like a characteristic change in surface tension ∆σ over

a characteristic length L:

τ ∼ ∆σ

L
.

To estimate the pressure gradient, we take the pressure at the needle tip, which scales like

hsolid/Lm
2 (where hsolid is the needle height, and Lm is the length of the meniscus; see §5.5.1).

This pressure should act over a characteristic L, such that

∂p

∂x
∼ 1

L

hsolid

Lm
2 .

From experiments hsolid ∼ 10−7 m, Lm ∼ 10−7 m, and ε ∼ 10−8 m;2 the surface tension of

the mixture should scale as ∆σ ∼ 10−2 N/m. Combining these approximations, we find3

M≈ ∆σLm
2

εhsolid

≈ 10−1.

2The height of the needle was measured at about 500 nm, and the length of the meniscus should be
roughly the same size. Alq3 molecules are roughly a nanometer in size, so the ultra-thin film should be
roughly an order of magnitude larger to accommodate flow of Alq3 molecules.

3Typical fluids have surface tensions between 0.2 and 0.7 N/m, thus 0.1 N/m is a reasonable estimate of
concentration differences.
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This estimate suggests that flow driven by capillary pressure dominates Marangoni effects.

But given that the above is a rough estimate, it is quite possible that Marangoni effects do

influence flow in the present study. Nevertheless, this thesis ignores any contribution from

Marangoni effects.

C.4 Cleaning procedure for silicon/glass wafers

Substrates must be cleaned before Alq3-deposition. Substrates are loaded onto a substrate

holder, which holds substrates vertically in glass beakers. Each beaker was filled with roughly

50 ml of solvent and either ultrasonicated or boiled as described in Tbl. C.1. Beakers should

be rinsed appropriately (i.e., rinse with water before filling with water or µ90, with acetone

before filling with acetone, and with isopropyl before filling with isopropyl).

step cleaning solution time agitation

1 µ90 cleaning solution 5 min ultrasonication
2 deionized water 2 min ultrasonication
3 deionized water 2 min ultrasonication
4 acetone 2 min ultrasonication
5 acetone 2 min ultrasonication
6 acetone 2 min ultrasonication
7 isopropyl alcohol 2 min boiling
8 isopropyl alcohol 2 min boiling

Table C.1: Cleaning procedure for glass substrates.

C.5 Methanol properties

Methanol is the organic solvent used to anneal Alq3 in this thesis. Certain estimations in

this thesis use the material properties of the methanol summarized in Tbl. C.2. Most of

these properties were gathered from Methanol material safety data sheets. The diffusion

coefficients in air are taken from Mrazek et al. [68]. The self-diffusion coefficient is taken

from [18, Tbl. 2].
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formula CH3OH
molar mass (g/mol) 32.04

density (g/cm3) 0.7918
melting point (◦C) -97.8
boiling point (◦C) 64.5

critical temperature (◦C) 240
vapor pressure (@ 20◦C kPa) 12.3

vapor density (air = 1) 1.11
surface tension (N/m) 0.0227

diffusion coefficient (cm2/s)
in air @25◦C 0.162

in air @50/@55 ◦C 0.195–0.197
self-diffusion 2.39× 10−5

dielectric constant (at 20◦C) 30
solvent type polar

viscosity (at 20◦C, Pa · s) 5.44× 10−4

Table C.2: Methanol properties
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